Complex Analysis – Showing z is a Root of Unity

complex numberscomplex-analysis

I want to show that if $z\in\mathbb{C}$ such that $|z|=1$ and $1+z^{k_1}+z^{k_2}=0$ for integers $k_1<k_2$, than $z$ is a root of unity.

Here is my approach:
Suppose $z=\cos(\theta)+i\sin(\theta)$. Then we have $$1+\cos(k_1\theta)+\cos(k_2\theta)+i(\sin(k_1\theta)+\sin(k_2\theta))=0.$$
This would require $$\sin(k_1\theta)+\sin(k_2\theta)=2\sin\left(\frac{(k_1+k_2)\theta}{2}\right)\cos\left(\frac{(k_2-k_1)\theta}{2}\right)=0.$$
This would mean either
$$\frac{(k_1+k_2)\theta}{2}=n\pi$$
or
$$\frac{(k_2-k_1)\theta}{2}=\frac{(2n+1)\pi}{2}$$
so either
$$\theta=\frac{2n\pi}{k_1+k_2}, \frac{(2n+1)\pi}{k_2-k_1}$$
Now note that
$$1+\cos(k_1\theta)+\cos(k_2\theta)=1+2\cos\left(\frac{(k_1+k_2)\theta}{2}\right)\cos\left(\frac{(k_2-k_1)\theta}{2}\right)$$
But now I do not know how to continue, because I would need the real part to be $0$. Any hints on how to continue? My guess is that it would be a $k_1+k_2$-root of unity. Also, is there an algebraic way/trick of doing this without resorting to using polar forms and trig identities? Thank you.

Best Answer

The key point is that $z^{k_1}$ and $z^{k_2}$ are complex conjugate.

Indeed, since $|z|=1$, let $z=e^{i\theta}$ then

$$1+e^{ik_1\theta}+e^{ik_2\theta}=0$$

requires that $e^{ik_1\theta}+e^{ik_2\theta}$ is real that is $e^{ik_2\theta}=e^{-ik_1\theta}$ with

$$e^{ik_1\theta}+e^{-ik_1\theta}=2\cos (k_1 \theta)=2\Re(z^{k_1})=-1$$

therefore

  • $z^{k_1}=-\frac12 +i\frac{\sqrt 3}2=e^{i\frac{2\pi}3}$
  • $z^{k_2}=-\frac12 -i\frac{\sqrt 3}2=e^{i\frac{4\pi}3}$

Following your way, we have that the condition

$$1+\cos(k_1\theta)+\cos(k_2\theta)+i(\sin(k_1\theta)+\sin(k_2\theta))=0$$

requires

$$\sin(k_1\theta)+\sin(k_2\theta) =0 \iff k_2\theta =-k_1\theta +2n\pi \; \lor \; k_2\theta =\pi +k_1\theta +2n\pi$$

then for $k_2\theta =-k_1\theta +2n\pi$ we obtain

$$1+\cos(k_1\theta)+\cos(k_2\theta) =0 \iff 1+2\cos(k_1\theta) =0$$

that is

  • $k_1\theta =\frac{2\pi}3+2n\pi \implies k_2\theta=\frac{4\pi}3+2n\pi$

or

  • $k_1\theta =\frac{4\pi}3+2n\pi \implies k_2\theta=\frac{2\pi}3+2n\pi$

which are equivalent, while for $k_2\theta =\pi +k_1\theta +2n\pi$ we obtain

$$1+\cos(k_1\theta)+\cos(k_2\theta) =0 \iff 1=0$$

Related Question