Show that this manifold has dimension 2

linear algebramultivariable-calculussmooth-manifolds

Q. Given that $M=\{\mathbf{x} \in \mathbb{R}^4: x_1^2 + x_2^2 + x_3^2 + x_4^2 =1, x_1x_2 = x_3x_4\}$. Show that $M$ is a smooth manifold of dimension 2.

I write $M = \mathbf{F}^{-1}(\{\mathbf{0}\})$, where $\mathbf{F}: \mathbb{R}^4 \rightarrow \mathbb{R}^2$ is given by $\mathbf{F} = \begin{pmatrix} x_1^2 + x_2^2 + x_3^2 + x_4^2 -1 \\ x_1x_2 – x_3x_4 \end{pmatrix}$.
I calculate the derivative $D\mathbf{F} = \begin{pmatrix} 2x_1 & 2x_2 & 2x_3 & 2x_4 \\ x_2 & x_1 & -x_4 & -x_3\end{pmatrix}$.

If I can show that $D\mathbf{F}$ has rank 2, then that will imply that $M$ has dimension 4-2 =2. But I am unable to show the rank is 2.

I could manipulate the constraints to get $(x_1 \pm x_2)^2 + (x_3 \mp x_4)^2 =1$, but am stuck after that.

Best Answer

For every $x$, $rank(DF_x)\leq 2$. Now $rank(dF_x)\leq 1$ iff there is $\lambda$ s.t.

$(*)$ $x_2=2\lambda x_1,x_1=2\lambda x_2,x_4=-2\lambda x_3,x_3=-2\lambda x_4$ (since $x\in M$, $x\not=0$).

Consider the cases when $\lambda=\pm 1/2$ and $\lambda\not=\pm 1/2$ and deduce that there are no solutions of $(*)$ in $M$.

Related Question