Show that $\sqrt{\frac{1+2\sin\alpha\cos\alpha}{1-2\sin\alpha\cos\alpha}}=\frac{1+\tan\alpha}{\tan\alpha-1}$

trigonometry

Show that $\sqrt{\dfrac{1+2\sin\alpha\cos\alpha}{1-2\sin\alpha\cos\alpha}}=\dfrac{1+\tan\alpha}{\tan\alpha-1}$ if $\alpha\in\left(45^\circ;90^\circ\right)$.

We have $\sqrt{\dfrac{1+2\sin\alpha\cos\alpha}{1-2\sin\alpha\cos\alpha}}=\sqrt{\dfrac{\sin^2\alpha+2\sin\alpha\cos\alpha+\cos^2\alpha}{\sin^2\alpha-2\sin\alpha\cos\alpha+\cos^2\alpha}}=\sqrt{\dfrac{(\sin\alpha+\cos\alpha)^2}{(\sin\alpha-\cos\alpha)^2}}=\sqrt{\left(\dfrac{\sin\alpha+\cos\alpha}{\sin\alpha-\cos\alpha}\right)^2}.$

Using the fact that $\sqrt{a^2}=|a|$ the given expression is equal to $\left|\dfrac{\sin\alpha+\cos\alpha}{\sin\alpha-\cos\alpha}\right|.$ I think that in the inverval $\left(45^\circ;90^\circ\right) \sin\alpha>\cos\alpha$ but how can I prove that? What to do next?

Best Answer

By the definition of cosine as the x-coordinate of a circle, cosine is negative in the interval $(90^{\circ},180^{\circ})$

$\cos 2x =2\cos^2x-1=1-2\sin^2x$
$\cos 2x =(\sqrt{2} \cos x-1)(\sqrt{2} \cos x+1)=-(\sqrt{2} \sin x-1)(\sqrt{2} \sin x+1)$

Using the fact that $\cos 2x$ is -ve in the interval $x \in (45^{\circ},90^{\circ})$

Prove the fact that $\cos x < \frac{1}{\sqrt{2}}< \sin x$ in the interval $x \in (45^{\circ},90^{\circ})$

Proof 2: There is 1 more way people define $\cos x = \frac{\text{adjacent}}{\text{hypotenuse}}$

Let the angles be $x,90-x,90$

Use the fact that the side opposite to the greater angle is greater.

Therefore, adjacent < opposite (for $x \in (45^{\circ},90^{\circ})$)

Therefore, $\cos x < \sin x$ for $x \in (45^{\circ},90^{\circ})$

Related Question