Show that $\sqrt{10}+\sqrt{26}+\sqrt{17}+\sqrt{37} \gt \sqrt{341}$

inequalitynumber-comparisonradicals

Show that $\sqrt{10}+\sqrt{26}+\sqrt{17}+\sqrt{37} \gt \sqrt{341}$.

This is inspired by
Showing $x+y>z$, where $x=\sqrt{10}+\sqrt{26}$, $y=\sqrt{17}+\sqrt{37}$, and $z=\sqrt{323}$. Is my idea corect?,
where the 341 is replaced by
323.

In that problem,
the difference is about
$0.4949$,
which enabled a
quite elementary proof to work.

In this case,
the difference is about
$0.00098$,
which is much harder.

So,
is an elementary proof possible,
other than computing the difference?

Note:
Wolfram Alpha gives
this form for the difference:

sqrt(root of x^16 – 6896 x^15 + 21218584 x^14 – 38619086608 x^13 + 46445175324092 x^12 – 39034285182032752 x^11 + 23634682317529311848 x^10 – 10471213870456147495696 x^9 + 3411556529576995933189478 x^8 – 814131450981226210018475344 x^7 + 140459189711872042665929874728 x^6 – 17103305259239135613970718210992 x^5 + 1412793771745512798455228682417916 x^4 – 74118197304168530774085170831631440 x^3 + 2187202048899771587108104647206992600 x^2 – 27077232770375735729098901781263934000 x + 26005877616308367788704404950625 near x = 9.60433×10^-7)

It also gives the
minimal polynomial as

x^32 – 6896 x^30 + 21218584 x^28 – 38619086608 x^26 + 46445175324092 x^24 – 39034285182032752 x^22 + 23634682317529311848 x^20 – 10471213870456147495696 x^18 + 3411556529576995933189478 x^16 – 814131450981226210018475344 x^14 + 140459189711872042665929874728 x^12 – 17103305259239135613970718210992 x^10 + 1412793771745512798455228682417916 x^8 – 74118197304168530774085170831631440 x^6 + 2187202048899771587108104647206992600 x^4 – 27077232770375735729098901781263934000 x^2 + 26005877616308367788704404950625

Best Answer

Let $$ s \doteq \sqrt{10} + \sqrt{17} + \sqrt{26} + \sqrt{37} = \sum_{n=3}^6 \sqrt{n^2+1}. $$ The inequality $s > \sqrt{341}$ is fairly tight because $s^2 \approx 341.0362$. However, we will obtain the bound $s^2 > 341.03$ using only rational arithmetic.

To begin, note that $$ \sqrt{n^2+1} - n = \frac{1}{\sqrt{n^2+1} + n} < \frac{1}{2n}. $$ The inequality goes the wrong way to use directly. Instead we express it as $\sqrt{n^2+1} < n + \frac{1}{2n}$ and write $$ \sqrt{n^2+1} - n = \frac{1}{\sqrt{n^2+1} + n} > \frac{1}{n + \frac{1}{2n} + n} = \frac{2n}{4n^2+1}. $$ Therefore $$ s = \sum_{n=3}^6 \sqrt{n^2+1} > \sum_{n=3}^6 \left(n + \frac{2n}{4n^2+1}\right) = \frac{130086126}{7044245}. $$ The final step is just some more rational arithmetic (albeit with large integers!): $$ s^2 - 341 = \frac{1506999259351}{49621387620025} > \frac{15}{500} = 0.03. $$ Therefore $s^2 > 341.03$.