Show that $\pi =2 F\left(\frac{1}{2}, \frac{1}{2}; \frac{3}{2}; 1\right)$

hypergeometric functionpisequences-and-series

Recently learned about Hypergeometric functions.

\begin{equation}
F(a, b; c; z) = \sum_{n=0}^{\infty} \frac{(a)_n (b)_n}{(c)_n} \frac{z^n}{n!}
\end{equation}

which has a special case example

\begin{equation}
F\left(\frac{1}{2}, \frac{1}{2}; \frac{3}{2}; z^2\right) = \frac{\arcsin(z)}{z}
\end{equation}

Rearranging

\begin{equation}
\arcsin(z) = z F\left(\frac{1}{2}, \frac{1}{2}; \frac{3}{2}; z^2\right)
\end{equation}

and substituting $a=\frac{1}{2}$, $b=\frac{1}{2}$, $c=\frac{3}{2}$, $z=1$

\begin{align}
\arcsin(1) &= F\left(\frac{1}{2}, \frac{1}{2}; \frac{3}{2}; 1^2\right)\\
&= \sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_n \left(\frac{1}{2}\right)_n}{\left(\frac{3}{2}\right)_n} \frac{1^n}{n!}
\end{align}

Given that $\arcsin(1) = \frac{\pi}{2}$, then $\pi$ can be expressed as

\begin{align}
\pi &= 2 \sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_n \left(\frac{1}{2}\right)_n}{\left(\frac{3}{2}\right)_n} \frac{1^n}{n!}\\
&=\sum_{n=0}^{\infty} \frac{(2n-1)!!}{(\frac{1}{2}+n)n!2^n}
\end{align}

and plotted using a Wolfram Hypergeometric Function:

pi

How to prove that result?

Best Answer

By DLMF 15.6.1 $$ 2F\left({1/2,1/2\atop3/2};1\right)=\int_0^1\frac{\mathrm dt}{\sqrt{t(1-t)}}=\operatorname{B}(1/2,1/2)=\Gamma^2(1/2)=\pi. $$