Show that $\int_0^\frac{\pi}{2}\sqrt{\sin x} dx \times \int_0^\frac{\pi}{2}\frac{1}{\sqrt{\sin x}} dx =\pi $

calculusintegration

Show that $\int_0^\frac{\pi}{2}\sqrt{\sin x} dx \times \int_0^\frac{\pi}{2}\frac{1}{\sqrt{\sin x}} dx =\pi $

My teacher gave this question to solve but I was unable to solve it.

I think there is surely any property of definite integral which I'm missing.
I'm trying not to use exponential integral or any other special function.

I tried the following method:
$$\int_0^\frac{\pi}{2}\sqrt{\sin x} dx \times \int_0^\frac{\pi}{2}\frac{1}{\sqrt{\sin x}} dx$$
$$\int_0^\frac{\pi}{2}\sqrt{\sin x} \times \frac{1}{\sqrt{\sin x}} dx$$
$$\int_0^\frac{\pi}{2}dx = \frac{\pi}{2} $$

This is of course not true. What should I do with this? Kindly help me.

Best Answer

Here's an answer that does not rely on special functions. As in Mokrane's original approach, we combine the two integrals to obtain a double integral (the same method is also used in this answer to a similar question).

We have $$ P \equiv \int \limits_0^{\pi/2} \sqrt{\sin(x)} \, \mathrm{d} x \int \limits_0^{\pi/2} \frac{\mathrm{d} y}{\sqrt{\sin(y)}} = \int \limits_0^{\pi/2} \int \limits_0^{\pi/2} \sqrt{\frac{\sin(x)}{\sin(y)}} \, \mathrm{d} x \, \mathrm{d} y \ . $$ Letting $u = \sin(x)$ and $v = \sin(y)$, we find \begin{align} P &= \int \limits_0^1 \int \limits_0^1 \frac{\sqrt{\frac{u}{v}}}{\sqrt{1-u^2}\sqrt{1-v^2}} \, \mathrm{d} u \, \mathrm{d} v = \frac{1}{2} \int \limits_0^1 \int \limits_0^1 \frac{\sqrt{\frac{u}{v}} + \sqrt{\frac{v}{u}}}{\sqrt{1-u^2}\sqrt{1-v^2}} \, \mathrm{d} u \, \mathrm{d} v \\ &= \int \limits_0^1 \int \limits_0^v \frac{\sqrt{\frac{u}{v}} + \sqrt{\frac{v}{u}}}{\sqrt{1-u^2}\sqrt{1-v^2}} \, \mathrm{d} u \, \mathrm{d} v \, , \end{align} where we exploited the symmetry of the integrand to simplify the result. Now the substitution $u = v t^2$ in the inner integral yields \begin{align} P &= 2 \int \limits_0^1 \int \limits_0^1 \frac{(1 + t^2) v}{\sqrt{1 - t^4 v^2}\sqrt{1-v^2}} \, \mathrm{d} t \, \mathrm{d} v = 2 \int \limits_0^1 (1+t^2) \int \limits_0^1 \frac{v}{\sqrt{1 - t^4 v^2}\sqrt{1-v^2}} \, \mathrm{d} v \, \mathrm{d} t \\ &\overset{(*)}{=} 2 \int \limits_0^1 (1+t^2) \frac{\operatorname{artanh}(t^2)}{t^2} \, \mathrm{d} t = 2 \int \limits_0^1 \left(1 + \frac{1}{t^2}\right) \operatorname{artanh}(t^2) \, \mathrm{d} t \overset{\text{IBP}}{=} 2 \int \limits_0^1 \left(\frac{1}{t} - t\right) \frac{2 t}{1-t^4} \, \mathrm{d} t \\ &= 4 \int \limits_0^1 \frac{\mathrm{d} t}{1+t^2} = 4 \arctan(1) = \pi \, . \end{align}


Proof of $(*)$:

The Euler substitution $w = \sqrt{\frac{1-v^2}{a^{-2}-v^2}}$ yields $$ \int \limits_0^1 \frac{v}{\sqrt{1-a^2 v^2}\sqrt{1-v^2}} \, \mathrm{d} v = \frac{1}{a} \int \limits_0^a \frac{\mathrm{d}w}{1-w^2} = \frac{\operatorname{artanh}(a)}{a} $$ for $a \in (0,1)$.