Show that $f(\rho)=0$ for any modular form of weight $k$ if $\rho=e^{\frac{2\pi i}{3}}$ and $3\nmid k$.

analytic-number-theoryautomorphic-formscomplex-analysismodular-formsrepresentation-theory

In Exercise 1.3.3 from Automorphic Forms and Representations, Daniel Bump gives the hint as follows:

Observe that $\gamma(\rho)=\rho$ where $\gamma= \begin{pmatrix} 1&1\\
-1& \\ \end{pmatrix}$
, and apply $$f\left(\frac{az+b}{cz+d}\right)=(cz+d)^kf(z)\ \ \text{for}\ \
\begin{pmatrix} a&b\\ c&d\\
\end{pmatrix}\in\mathrm{SL}(2,\mathbb{Z}).$$

However, I feel confused about the hint and wonder how to prove it.

  1. For $\rho=e^{\frac{2\pi i}{3}}$ a complex number and $\gamma$ a
    matrix, how to understand the equation $\gamma(\rho)=\rho$ ?
  2. Having applied the formula, I get
    $$f\left(\frac{z+1}{-z}\right)=(-z)^kf(z).$$ For
    $z=\rho=e^{\frac{2\pi i}{3}}$, it follows that
    $$f\left(-1-e^{-\frac{2\pi i}{3}}\right)=(-1)^ke^{\frac{2k\pi
    i}{3}}f\left(e^{\frac{2\pi i}{3}}\right).$$
    How to demonstrate that
    $f(\rho)=0$?

Best Answer

Simple proof:

By definition, we have

$$ f(\rho)=f(\gamma(\rho))=(-\rho)^kf(\rho). $$

Because $k$ is automatically even, we have

$$ (1-\rho^k)f(\rho)=0 $$

Since $\rho^k\ne1$ if and only if $3\nmid k$, we conclude that $f(\rho)=0$ in this case.

My original proof:

Let $\nu_p(f)$ denote the unique integer such that $f(z)(z-p)^{-\nu_p(f)}$ is analytic and nonzero at $z=p$, so when $f$ is a modular form of weight $k$ on $SL(2,\mathbb Z)$, there is

$$ \frac12\nu_i(f)+\frac13\nu_\rho(f)+\nu_\infty(f)+\sum_{\substack{p\in\mathcal F\\p\ne i,\rho}}\nu_p(f)={k\over12}. $$

Consequently, multiplying both sides by $12$ gives ($k$ is assumed to be even)

$$ 4\nu_\rho(f)\equiv k-6\nu_i(f)\pmod{12} $$

Suppose $v_\rho(f)=0$. Then the right hand side will be $\equiv0\pmod3$, so

$$ k\equiv6\nu_i(f)\equiv0\pmod3. $$

Therefore, we proved the contrapositive: If $f(\rho)\ne0$, then $3|k$.

Related Question