Show that $\frac{\pi}{\sin\pi z}=\lim_{m\to\infty}\sum_{n=-m}^m(-1)^n\frac{1}{z-n}$

complex-analysis

Question: Show that $\frac{\pi}{\sin\pi z}=\lim_{m\to\infty}\sum_{n=-m}^m(-1)^n\frac{1}{z-n}$.

Specifically…..: Ahlfors derives this on page 189/190 of his "Complex Analysis" book. In it, he uses his derivations for $\pi\cot\pi z$, specifically, $$\pi\cot\pi z=\lim_{m\rightarrow\infty}\sum_{n=-m}^m\frac{1}{z-n}=\frac{1}{z}+\sum_{n=1}^\infty\frac{2z}{z^2-n^2}$$ I suppose I am wondering if there is maybe a way to derive the question above without the use of $\pi\cot\pi z$? Maybe using the Laurent Series expansion of $\frac{\pi}{\sin\pi z}$, but I wasn't getting anything to come out cleanly (maybe I just made a mistake).

Best Answer

$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ $\ds{\bbox[5px,#ffd]{{\pi \over \sin\pars{\pi z}} = \lim_{m \to \infty}\sum_{n = -m}^{m}{\pars{-1}^{n} \over z - n}}:\ {\Large ?}}$.


With $\ds{m \in \mathbb{N}_{\ \geq\ 1}}$: \begin{align} &\bbox[5px,#ffd]{\pi \over \sin\pars{\pi z}} = {1 \over z} + {1 \over z}\bracks{{\pi z \over \sin\pars{\pi z}} - 1} \\[5mm] = &\ {1 \over z} + {1 \over z}\bracks{% \lim_{m \to \ \infty}\sum_{{\Large n\ =\ -m} \atop {\Large n\ \not=\ 0}}^{m} a_{n}\pars{{1 \over z - n} + {1 \over n}}} \end{align} where $\ds{a_{n} \equiv \mrm{Res}\pars{{\pi z \over \sin\pars{\pi z}} - 1, z = n} = \lim_{z \to n} \braces{\pars{z - n}\bracks{{\pi z \over \sin\pars{\pi z}} - 1}} = \pars{-1}^{n}\, n}$.

See Mittag-Leffler Expansion. Then, \begin{align} &\bbox[5px,#ffd]{\pi \over \sin\pars{\pi z}} = {1 \over z} + {1 \over z}\bracks{% \lim_{m \to \ \infty}\sum_{{\Large n\ =\ -m} \atop {\Large n\ \not=\ 0}}^{m} {\pars{-1}^{n}\,z \over z - n}} = {1 \over z} + \lim_{m \to \ \infty}\sum_{{\Large n\ =\ -m} \atop {\Large n\ \not=\ 0}}^{m} {\pars{-1}^{n} \over z - n} \\[5mm] = &\ \bbx{\large\lim_{m \to \ \infty}\sum_{n\ =\ -m}^{m} {\pars{-1}^{n} \over z - n}} \\ & \end{align}

Related Question