Show that a total variation is greater or equal than absolute value of a function

bounded-variationreal-analysis

Let's define total variation of a function $f: \mathbb{R} \mapsto \mathbb{C}$ in the following way
$$T_f(x) = \sup \sum_{j=1}^N \left|f(x_j) – f(x_{j-1}) \right| \qquad x \in \mathbb{R},$$
where the supremum is taken over all $N$ and all $-\infty < x_0 < \ldots < x_N = x$.

I would like to show that

  1. $\left|f(y) \right| \le T_f(y)$,
  2. $\left|f(y) – f(x) \right| \le T_f(y) – T_f(x)$ for $x < y$,

if $T_f(y) < \infty$.

How can I deal with those problem?

Best Answer

Given a partition $-\infty < x_0 < x_1 < \ldots x_N = x$ and $x < y$, we have

$$\sum_{j=1}^N|f(x_j) - f(x_{j-1}| + |f(y) - f(x)| \leqslant \sup_{\mathcal{P_y}}\sum_{j=1}^M|f(y_j) - f(y_{j-1})| = T_f(y),$$

where $\mathcal{P_y}$ is the collection of all partitions of the form $-\infty < y_0 < y_1 < \ldots <y_M = y$ ($M \in \mathbb{N}$).

Taking the supremum of both sides over $\mathcal{P_x}$, the collection of all partitions of the form $-\infty < x_0 < x_1 < \ldots <x_N= x$ ($N \in \mathbb{N})$, we get

$$T_f(x) + |f(y) - f(x)| = \sup_{\mathcal{P_x}}\sum_{j=1}^N|f(x_j) - f(x_{j-1}| + |f(y) - f(x)| \leqslant T_f(y),$$

and it follows that $|f(y) - f(x)| \leqslant T_f(y) - T_f(x)$.

Related Question