Show $M=\{(x,y):y\geq x^2\}$ is a convex set

convex-analysis

Show that the following set is convex. $$M = \left\{ (x,y) : y \geq x^2 \right\}$$


First I take two arbitrary points $(x_1,y_1)$ and $(x_2,y_2) \in M$. Then I need to show that

$$\lambda(x_1,y_1)+[1-\lambda](x_2,y_2)= (\lambda x_1 + (1 − \lambda) x_2, \lambda y_1 + (1 − \lambda) y_2 ) \in M$$

After that I have no clue what I have to do. Thanks for your support.

Best Answer

Take two points in $M$, say, $(x_1,y_1)$ and $(x_2,y_2)$. You need to prove that $$(\lambda x_1 + (1-\lambda)x_2, \lambda y_1 + (1-\lambda)y_2) \in M \Leftrightarrow \lambda y_1 + (1-\lambda)y_2 \geq \left( \lambda x_1 + (1-\lambda)x_2\right)^2$$ For every $\lambda \in (0,1)$. The right side is $$\left( \lambda x_1 + (1-\lambda)x_2\right)^2 \leq \lambda x_1^2 + (1-\lambda)x_2^2 \leq \lambda y_1+(1-\lambda) y_2$$ Here i used the convexity of $x^2$ on the first inequality, since $(x^2)'' = 2$ and the fact that $\lambda \in (0,1)$.

One more general result is that the epigraph of a function is convex iff the function is convex.