Show $\int_0^{\pi/2}\int_0^1 e^{t+t^{\tan\theta}}dtd\theta=\frac{\pi}{4}(e^2-1)$

definite integralsfubini-tonelli-theoremsintegrationmultivariable-calculus

A friend gave me this double integral a while ago, and I couldn't figure out how to solve it.
$$\int_0^{\pi/2} \int_0^1 e^{t+t^{\tan\theta}}\,dt d\theta=\dfrac{\pi}{4}\left(e^2-1\right)$$
I tried using Fubini's theorem, but I did not know what to do from there
$$\int_0^1e^t\int_0^{\pi/2} e^{t^{\tan\theta}}\,d\theta dt=\int_0^1 e^t\int_0^{\pi/2}\sum_{n=0}^\infty \frac{t^{n\tan\theta}}{n!}\,d\theta dt $$
$$\int_0^{\pi/2}a^{\tan\theta}\,d\theta=?$$
Wolfram Alpha gives a closed form in terms of exponential integral functions, but it seems challenging to solve the sum at the end involving exponential integral functions. Please help

Best Answer

First begin with the substitution $s=\tan\theta\implies \frac{1}{1+s^2}ds=d\theta$, giving us \begin{align*}I&:=\int_{0}^{\frac{\pi}{2}}\int_{0}^{1}e^{t+t^{\tan\theta}}\, dt\, d\theta \\ &\,=\int_{0}^{\infty}\int_{0}^{1}\frac{\exp(t+t^s)}{1+s^2}\, dt\, ds\stackrel{s\to 1/s}{=}\int_{0}^{\infty}\int_{0}^{1}\frac{\exp(t+t^{1/s})}{1+s^2}\, dt\, ds \\ &\!\!\stackrel{t\to t^s}{=}\int_{0}^{\infty}\int_{0}^{1}\frac{\exp(t+t^s)s t^{s-1}}{1+s^2}\, dt\, ds\\ &=\int_{0}^{\infty}\int_{0}^{1}\frac{\exp(t+t^s)(s t^{s-1}+1)}{1+s^2}\, dt\, ds-\int_{0}^{\infty}\int_{0}^{1}\frac{\exp(t+t^s)}{1+s^2}\, dt\, ds \end{align*} Now notice that since $\frac{d}{dt}\exp(t+t^s)=\exp(t+t^s)(st^{s-1}+1)$, then integrating with respect to $t$ on the first integral is trivial, and gives us $$I=\int_{0}^{\infty}\frac{e^2-1}{1+s^2}\, ds-I\implies I=\frac{\pi}{4}(e^2-1),$$ as desired. $\square$