Show $f(x,y)=x+y$ is continuous on $\mathbb{R}^2$

proof-verificationreal-analysis

Define $f: \mathbb{R}^2 \to \mathbb{R}$ as $f(x,y)=x+y$. Show that $f$
is continuous on $\mathbb{R}^2$

My attempt:

We need to find a $\delta>0$ such that for a point $(x_0,y_0) \in \mathbb{R}^2$ and an $\epsilon >0$ if $\Vert(x,y)-(x_0,y_0)\Vert \lt \delta$ then
$\left| f(x,y)-f(x_0,y_0) \right| \lt \epsilon$.

Preliminary work:

Let $a,b \in \mathbb{R}$ then

$(|a|-|b|)^2 \geq 0$
$\iff |a|^2+|b|^2-2|a| \cdot |b| \geq 0 \iff a^2+b^2 \geq 2|a|\cdot|b| \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (\dagger)$

Proof:

Let $\delta = \frac{\epsilon}{ \sqrt{2}}$ and $\Vert (x,y) -(x_0,y_0) \Vert \lt \delta$

Or $\Vert (x,y) -(x_0,y_0) \Vert^2 = (x-x_0)^2+(y-y_0)^2 \lt \delta^2$

Now

$\left| f(x,y)-f(x_0,y_0) \right|^2$

$=\left| (x+y)-(x_0+y_0) \right|^2$

$=\left| (x-x_0)+(y-y_0) \right|^2$

$=\left| (x-x_0)^2+(y-y_0)^2+2(x-x_0)(y-y_0) \right|$

$=(x-x_0)^2+(y-y_0)^2+2(x-x_0)(y-y_0)$

$\leq (x-x_0)^2+(y-y_0)^2+2|x-x_0| \cdot |y-y_0|$

$\leq (x-x_0)^2+(y-y_0)^2+ (x-x_0)^2+(y-y_0)^2$ by $\dagger$

$= 2[(x-x_0)^2+(y-y_0)^2] \lt 2 \delta^2$

So $\left| f(x,y)-f(x_0,y_0) \right| \lt \sqrt{2} \delta = \epsilon \ \ \ \ \Box$

Did I make any mistake? Additionally, is there a simpler proof for this?

Best Answer

Choose $\delta = \varepsilon/2$. Then, for all $(x,y)$ such that $\| (x,y)-(x_0,y_0) \| < \delta$ we have that $$\max \{ |x-x_0|,|y-y_0| \} \leq \| (x-x_0,y-y_0) \| = \| (x,y)-(x_0,y_0) \| < \frac{\varepsilon}{2}$$ which means $|x-x_0|<\varepsilon/2$ and $|y-y_0|<\varepsilon/2$. Thus $$|f(x,y)-f(x_0,y_0)|=|(x+y)-(x_0+y_0)|\leq |x-x_0|+|y-y_0|<\varepsilon.$$

Related Question