Show for the centroid $M$ of a triangle $ABC$ that $\vec{OM}=\frac13(\vec{OA}+\vec{OB}+\vec{OC})$

centroideuclidean-geometrygeometrytrianglesvectors

Show for the centroid $M$ of a triangle $ABC$ that $$\vec{OM}=\dfrac13\left(\vec{OA}+\vec{OB}+\vec{OC}\right)$$
where $O$ is an arbitrary point.
enter image description here
I haven't studied position vectors and am very new to vectors so I would like a simple solution. Any help would be appreciated. I don't even know how to start. Maybe we can use the fact that the centroid divides each median in a ratio of $2:1$? Thank you!

Best Answer

As $A_1$ is the midpoint of $BC$,

$2\vec{OA_1} = \vec{OB} + \vec{OC}$

As $M$ is the centroid of the triangle, it divides median $AA_1$ into ratio of $AM:MA_1 = 2:1$

$\vec{OM} = \frac{\vec{OA}+2\vec{OA_1}}{3} = \frac{\vec{OA}+\vec{OB} + \vec{OC}}{3}$

That is all the proof is.

But if you need to further show how $2\vec{OA_1} = \vec{OB} + \vec{OC}$,

$\vec{OA_1} = \vec{OB} + \vec{BA_1}$

But also, $\vec{OA_1} = \vec{OC} + \vec{CA_1} = \vec{OC} - \vec{A_1C}$

As $\vec{BA_1} = \vec{A_1C}$, adding both you have

$2\vec{OA_1} = \vec{OB} + \vec{OC}$

Similarly you can show $\vec{OM} = \frac{\vec{OA}+2\vec{OA_1}}{3}$.

$\vec{OM} = \vec{OA}+\vec{AM}$

As $\vec{AM} = \frac{2}{3} \vec{AA_1}$,

$\vec{OM} = \frac{3\vec{OA}+2\vec{AA_1}}{3} = \frac{\vec{OA}+2(\vec{OA}+\vec{AA_1})}{3} = \frac{\vec{OA}+2\vec{OA_1}}{3}$