Show by hand the inequality $\frac{1}{2\ln2}\left(1-\sqrt{\frac{1-\ln2}{1+\ln2}}\right)>\sqrt{2}-1$

algorithmsconstantsinequalitypower series

Problem :

Show that :

$$\frac{1}{2\ln2}\left(1-\sqrt{\frac{1-\ln2}{1+\ln2}}\right)>\sqrt{2}-1$$



Using some approximation using itself algoritm found here (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots)I have :

$$99/70-1>\sqrt{2}-1$$

Wich is too large .

On the other hand see this question for an approximation of $\ln 2$ Any good approximation methods of $\ln(2)$?



Update :

Using the inverse function (see my comment) it remains to show :

$$\ln2<\frac{1}{\sqrt{2}}$$

Update 2 :

Using my answer in this link (inequality due @MichaelRozenberg) Prove that $\ln2<\frac{1}{\sqrt[3]3}$ :

We have :

$$\ln2< \frac{1}{3^{\frac{1}{3}}}$$

Remains to show that :

$$\frac{1}{3^{\frac{1}{3}}}<\frac{1}{\sqrt{2}}$$

Wich is easy !

How to show by hand without the helps of a computer ?

Best Answer

You may show the inequality using elementary equivalent rearrangements and Cauchy-Schwarz inequality as shown below.

This is surely not the nicest way but it works:

\begin{eqnarray*} \frac{1}{2\ln2}\left(1-\sqrt{\frac{1-\ln2}{1+\ln2}}\right) & > & \sqrt{2}-1 \\ & \Leftrightarrow & \\ \frac{1}{2\ln2}\left(1-\frac{1-\ln2}{1+\ln2}\right) & > & \left(\sqrt{2}-1\right)\left(1+\sqrt{\frac{1-\ln2}{1+\ln2}}\right) \\ & \stackrel{\frac 1{\sqrt 2 - 1} = \sqrt 2 + 1}{\Longleftrightarrow} & \\ \sqrt 2 + 1 & > & \left(1+\ln 2\right)\left(1+\sqrt{\frac{1-\ln2}{1+\ln2}}\right) \\ & \Leftrightarrow & \\ \sqrt 2 & > &\ln 2 + \sqrt{1-\ln^2 2} \\ \end{eqnarray*}

The last inequality is true because of Cauchy-Schwarz:

$$1\cdot \ln 2 + 1\cdot \sqrt{1-\ln^2 2} \stackrel{C.S.}{<}\sqrt 2 \cdot \sqrt{\ln^2 2 + 1 - \ln^2 2} = \sqrt 2$$