Integration – Series Expansion of ???^? (tanh(x²-a²)/(x²-a²)) dx for Small a

integrationpower series

I found that when $a \gg 1$, the function $I(a) = \int_{-\infty}^{\infty} \frac{\tanh{(x^2-a^2)}}{x^2-a^2} dx \approx \frac{2\gamma + 2 \log(16/\pi) + 4 \log a}{a}$.

How does the integral behave when $a < 1$?

In this limit, we can write $I(a) = I(0) + d_1 a^2 + d_2 a^4 + \cdots$

I found that $I(0) = 4\sqrt{2 \pi} \eta\left(-\frac{1}{2}\right) \approx 1.90556$, where $\eta(z)$ is the Dirichlet eta function.

Using numerical integration, I found that $d_1 \approx 0.79$ and $d_2\approx-0.37$.

What are the analytical forms of $d_1, d_2$ and so on?

Best Answer

Partial solution

The function $\frac{\tanh x}{x}$ is analytical near $x=0$, so we can decompose it into the series of $a^{2k}, k=0, 1,2,...$ $$\frac{\tanh(x^2-a^2)}{x^2-a^2}=\frac{\tanh(x^2)}{x^2}-a^2\left(\frac1{x^2\cosh^2(x^2)}-\frac{\tanh(x^2)}{x^4}\right)+O(a^4)$$ Every term is integrable on $(-\infty;\infty)$; considering the two first terms of the asymptotics $$\int_{-\infty}^\infty \frac{\tanh(x^2-a^2)}{x^2-a^2} dx=\int_{-\infty}^\infty \frac{\tanh(x^2)}{x^2}+a^2\int_{-\infty}^\infty\left(\frac{\tanh(x^2)}{x^2}-\frac1{\cosh^2(x^2)}\right)\frac{dx}{x^2}+O(a^4)$$ $$\overset{x^2=t}{=}\int_0^\infty\frac{\tanh t}{t^{3/2}}dt+a^2\int_0^\infty\left(\frac{\tanh x}{x}-\frac1{\cosh^2x}\right)\frac{dx}{x^{3/2}}+O(a^4)$$ $$=\int_0^\infty\frac{\tanh t}{t^{3/2}}dt+a^2\int_0^\infty\left(\tanh x-x\right)\frac{dx}{x^{5/2}}+a^2\int_0^\infty\left(1-\frac1{\cosh^2x}\right)\frac{dx}{x^{5/2}}+O(a^4)$$ Integrating the third term by part $$I(a)=\int_0^\infty\frac{\tanh t}{t^{3/2}}dt+\frac{a^2}2\int_0^\infty\frac{x-\tanh x}{x^{5/2}}dx+O(a^4)\tag{1}$$ where the first term $$\int_0^\infty\frac{\tanh t}{t^{3/2}}dt=\int_0^\infty\left(1-\frac2{e^{2x}+1}\right)\frac{dt}{t^{3/2}}\overset{IBP}{=}8\int_0^\infty\frac{e^{2t}}{(e^{2t}+1)^2}\frac{dx}{\sqrt x}$$ $$=4\sqrt2\int_0^\infty\frac{e^x}{(e^x+1)^2}\frac{dx}{\sqrt x}$$ For the sake of evaluation of the second integral, we consider $$I_1(\alpha)=\int_0^\infty x^\alpha\frac{e^x}{(e^x+1)^2}dx\overset{IBP}{=}\alpha\int_0^\infty\frac{x^{\alpha-1}}{e^x+1}dx=\alpha\Gamma(\alpha)\eta(\alpha)=\Gamma(1+\alpha)\eta(\alpha)\tag{2}$$ Taking $\alpha=-\,\frac12$ $$\int_0^\infty\frac{\tanh t}{t^{3/2}}dt=4\sqrt{2\pi}\,\eta\big(-\frac12\big)\tag{3}$$ Evaluating the second integral in the same way, we get $$\frac{a^2}2\int_0^\infty\frac{x-\tanh x}{x^{5/2}}dx=\frac{16 a^2}{3\sqrt 2}\int_0^\infty\frac{e^{2t}-e^t}{(e^t+1)^3}\frac{dt}{\sqrt t}$$ We consider instead $$I_2(\alpha)=\frac{16 a^2}{3\sqrt 2}\int_0^\infty\frac{e^{2t}-e^t}{(e^t+1)^3}t^\alpha dt$$ Taking a "suitable" $\alpha$ to implement integration by part and consider the terms separatly, in the end we will use the analytical continuation to define the result at $\alpha =-\,\frac12$

Straightforward evaluation gives $$I_2(\alpha)=\frac{16 a^2}{3\sqrt 2}\,\alpha\int_0^\infty t^{\alpha-1}\frac{e^t}{(e^t+1)^2}dt=\frac{16 a^2}{3\sqrt 2}\Gamma(1+\alpha)\eta(\alpha-1)$$ Taking $\alpha =-\,\frac12$ $$\frac{a^2}2\int_0^\infty\frac{x-\tanh x}{x^{5/2}}dx=\frac{16 \sqrt{\pi} a^2}{3\sqrt 2}\eta\big(-\frac32\big)\tag{4}$$ Putting (3) and (4) into (1) and using $\eta(\alpha)=\zeta(\alpha)(1-2^{1-\alpha})$ $$\boxed{\,\,I(a)=-4\sqrt{2\pi}(2\sqrt2-1)\zeta\big(-\frac12\big)-\frac{16\sqrt\pi}3\,\frac{4\sqrt2-1}{\sqrt2}\zeta\big(-\frac32\big)\,a^2+O(a^4)\,\,}$$ Numeric check at WolframAlpha confirms the result.

In the similar way we can evaluate higher terms. Taking the pattern, I would suppose that the full asymptotics could also be obtained, though I don't know the way to get it.

Related Question