Seeking methods to solve $ I = \int_{0}^{\infty} \frac{\sin(kx)}{x\left(x^2 + 1\right)} \:dx$

integrationlaplace transform

I am currently working on an definite integral that requires the following definite integral to be evaluated.

$$ I = \int_{0}^{\infty} \frac{\sin(kx)}{x\left(x^2 + 1\right)} \:dx$$

Where $k \in \mathbb{R}^{+}$

I was wondering what methods can be employed to solve this integral?

Best Answer

The method I took was:

Let

$$ I(t) = \int_{0}^{\infty} \frac{\sin(kxt)}{x\left(x^2 + 1\right)} \:dx$$

Take the Laplace Transform

\begin{align} \mathscr{L} \left[I(t) \right]&= \int_{0}^{\infty} \frac{\mathscr{L} \left[\sin(kxt)\right]}{x\left(x^2 + 1\right)} \:dx \\ &= \int_{0}^{\infty} \frac{kx}{\left(k^2x^2 + s^2\right)x\left(x^2 + 1\right)} \:dx \\ &= \int_{0}^{\infty} \frac{k}{\left(k^2x^2 + s^2\right)\left(x^2 + 1\right)} \:dx \\ &= \int_{0}^{\infty} \left[\frac{k^3}{\left(k^2 - s^2\right)\left(k^2x^2 + s^2 \right)} - \frac{k}{\left(k^2 - s^2\right)\left(x^2 + 1\right)}\right] \:dx \\ &= \left[\frac{k^3}{\left(k^2 - s^2\right)}\frac{\arctan\left(kx\right)}{ks} - \frac{k}{\left(k^2 - s^2\right)}\arctan(x)\right]_{0}^{\infty} \\ &= \frac{k^2}{s\left(k^2 - s^2\right)}\frac{\pi}{2} - \frac{k}{\left(k^2 - s^2\right)}\frac{\pi}{2} \\ &= \frac{k}{k^2 - s^2}\left[ \frac{k}{s} - 1 \right]\frac{\pi}{2} \\ &= \frac{k}{s\left(k + s\right)}\frac{\pi}{2} \end{align}

And thus,

$$ I(t) = \mathscr{L}^{-1}\left[\frac{k}{s\left(k + s\right)}\frac{\pi}{2} \right] = \left[1 - e^{-kt} \right]\frac{\pi}{2}$$

Lastly,

$$ I = I(1) = \left[1 - e^{-k} \right]\frac{\pi}{2}$$