Rules of inference and truth table

logicpropositional-calculus

$S,C,D,O$ are statements.

Then $((\neg S\rightarrow C)\wedge(C\rightarrow\neg D)\wedge(D\vee O)\wedge \neg O)\rightarrow S$ is a tautology.

This can be checked by a truth table or by the following.

(1) $\neg S\rightarrow C$

(2) $C\rightarrow\neg D$

(3) $D\vee O$

(4) $\neg O$

((1),(2),(3),(4) are premises.)

(5) $D$ ((3),(4)$\implies$(5))

(6) $\neg C$ ((2),(5)$\implies$(6))

(7) $S$ ((1),(6)$\implies$(7))

I don't understand why the above process, (1)-(7) verifies $((\neg S\rightarrow C)\wedge(C\rightarrow\neg D)\wedge(D\vee O)\wedge \neg O)\rightarrow S$ is a tautology.

Best Answer

If $\varphi$ and $\psi$ are formulas, then $\varphi \to \psi$ is a tautology iff $\varphi \vdash \psi$. Here, $\varphi = (\neg S\rightarrow C)\wedge(C\rightarrow\neg D)\wedge(D\vee O)\wedge \neg O$ and $\psi = S$, so you have to show that $(\neg S\rightarrow C)\wedge(C\rightarrow\neg D)\wedge(D\vee O)\wedge \neg O \vdash S$ ie : $$\{\underbrace{\neg S\rightarrow C}_{(1)} , \underbrace{C\rightarrow\neg D}_{(2)} , \underbrace{D\vee O}_{(3)}, \underbrace{\neg O}_{(4)} \} \vdash S$$

What you wrote is a proof of the above, since :
$\{(3), (4)\} \vdash D$
$\{(2), D\} \vdash C$ hence $\{(2), (3), (4)\} \vdash C$
etc

Related Question