Riemann integral $\underline{\int_a^b} \alpha f = \alpha \underline{\int_a^b} f$

calculusreal-analysisriemann-integrationsupremum-and-infimum

During our introduction to Riemann integrals and Darboux sums we recieved we encountered this theorem:

Let $f$ be a bounded function in $[a,b]$, Then if $\alpha >0$ then $\underline{\int_a^b} \alpha f = \alpha \underline{\int_a^b} f$.

So far I've proven by contradiction that $$\alpha \inf f = inf (\alpha f)$$.

I've used this fact to show that for some partition $P$: $$L(\alpha f, P)= \alpha L(f,P)$$

But I'm not sure how to translate my findings to arguments regarding lower integarls.
$$ \underline{\int_a^b} \alpha f = \sup \,L( \alpha f,P) $$
and
$$ \alpha \underline{\int_a^b} = \alpha \sup \,L(f,P) $$

Best Answer

For each partition $P$, we have$$L(\alpha f,P)=\alpha L(f,P)$$and therefore\begin{align}\underline{\int_a^b}\alpha f&=\sup_PL(\alpha f,P)\\&=\sup_P\alpha L(f,P)\\&=\alpha\sup_PL(f,P)\\&=\alpha\underline{\int_a^b}f.\end{align}

Related Question