Relation between slopes of a quadrilateral with endpoints on a hyperbola

analytic geometryconic sections

Question: Let $ABCD$ be a quadrilateral on the hyperbola $H: \frac{x^2}{a^2} – \frac{y^2}{b^2} = 1$. Let the slopes of the sides be $m_1,m_2,m_3$ and $m_4$, then does there exist a relation between $m_1,m_2,m_3$ and $m_4$ independant of the points chosen?

My Approach: Let the eccentric angles of $(A,B,C,D)$ be $(\alpha,\beta,\gamma,\delta)$. Then:-
\begin{align}
m_1 &= \frac{b}{a} \frac{\cos(\frac{\alpha – \beta}{2})}{\sin(\frac{\alpha + \beta}{2})} \\
m_2 &= \frac{b}{a} \frac{\cos(\frac{\beta – \gamma}{2})}{\sin(\frac{\beta + \gamma}{2})} \\
m_3 &= \frac{b}{a} \frac{\cos(\frac{\gamma – \delta}{2})}{\sin(\frac{\gamma + \delta}{2})} \\
m_4 &= \frac{b}{a} \frac{\cos(\frac{\alpha – \delta}{2})}{\sin(\frac{\alpha + \delta}{2})} \\
\end{align}
How to eliminate $\alpha,\beta,\gamma,\delta$ from these equations?

[Note: The original question was to find if such a relation holds for any conic section – I was able to show it holds for a parabola and an ellipse, but for hyperbola the calculations are very difficult.]

[Note after seeing comments: For the case of a parabola and ellipse, it is possible to extend it the property for all n-gons, where n is even. I'm not sure about the hyperbola case, as I can't seem to derive the case for a quadrilateral itself.]

Best Answer

  • Since it's lack of the contexts for the cases of ellipse and parabola, I'd like to start from a circle:

    $$(x,y)=r(\cos \theta,\sin \theta)$$

    Equation of chord $AB$

    $$x\cos \frac{\alpha+\beta}{2}+y\sin \frac{\alpha+\beta}{2} =r\cos \frac{\alpha-\beta}{2}$$

    $$m_1=-\cot \frac{\alpha+\beta}{2}$$

    From properties of cyclic quadrilaterals:

    $$180^{\circ}=A+C=B+D$$

    $$0=\tan B+\tan D$$

    $$0=\frac{m_1-m_2}{1+m_1 m_2}+\frac{m_3-m_4}{1+m_3 m_4}$$

    which is equivalent to

    $$0=\tan \frac{\alpha-\gamma}{2}+\tan \frac{\gamma-\alpha}{2}$$

    $$m_1-m_2+m_3-m_4=m_2 m_3 m_4-m_1 m_3 m_4+m_1 m_2 m_4-m_1 m_2 m_3$$

  • For an ellipse $(x,y)=(a\cos \theta,b\sin \theta)$

    $$m_1=-\frac{b}{a}\cot \frac{\alpha+\beta}{2}$$

    Transform every $m_i$ back to the auxiliary circle,

    $$\frac{a}{b}(m_1-m_2+m_3-m_4)= \frac{a^3}{b^3}(m_2 m_3 m_4-m_1 m_3 m_4+m_1 m_2 m_4-m_1 m_2 m_3)$$

    $$\frac{m_1-m_2+m_3-m_4}{m_2 m_3 m_4-m_1 m_3 m_4+m_1 m_2 m_4-m_1 m_2 m_3} =\frac{a^2}{b^2}$$

    enter image description here

  • For a hyperbola $(x,y)=(a\cosh t,b\sinh t)=(a\cos it,-bi\sin it)$

    $$m_1=\frac{b}{a}\coth \frac{t+u}{2} =\frac{bi}{a} \cot \frac{i(t+u)}{2}$$

    $\fbox{Note that $t, u, v, w$ differ from the eccentricity angles $\alpha, \beta, \gamma, \delta$ in $(a\sec , b\tan )$.}$

    Now replace $b$ by $bi$, we have

    $$\frac{m_1-m_2+m_3-m_4}{m_2 m_3 m_4-m_1 m_3 m_4+m_1 m_2 m_4-m_1 m_2 m_3} =\frac{a^2}{(bi)^2}$$

    $$\frac{m_1-m_2+m_3-m_4}{m_2 m_3 m_4-m_1 m_3 m_4+m_1 m_2 m_4-m_1 m_2 m_3} =-\frac{a^2}{b^2}$$

    enter image description here

  • For a parabola of the form $x^2=4py$, take $b\to \infty$

    $$m_1-m_2+m_3-m_4=0$$

    enter image description here

  • For a parabola of the form $y^2=4qx$, take $a\to \infty$.

    $$m_2 m_3 m_4-m_1 m_3 m_4+m_1 m_2 m_4-m_1 m_2 m_3=0$$

    enter image description here

Related Question