Recursive computation of determinant of Toeplitz tridiagonal matrix

determinantmatricesnumerical linear algebratoeplitz-matricestridiagonal-matrices

Let a matrix be a tridiagonal matrix of size $n \times n$, with elements equal to $2$ on the main diagonal, elements equal to $1$ directly above the main diagonal, elements equal to $3$ directly below the main diagonal, and with zeros in all other elements:
\begin{bmatrix}
2 & 1 & & & & \\
3 & 2 & 1 & & & \\
& 3 & 2 & 1 & & \\
& & 3 & 2 & \ddots & \\
& & & \ddots & \ddots & 1\\
& & & & 3 & 2
\end{bmatrix}

Express the determinant $A (n)$ using the determinants $A (n-2)$ and $A (n-1)$.


Could you explain me how this task is supposed to be done?

Best Answer

Use Laplace expansion with respect to the first row we have

$$\begin{aligned} A_{n} &= \det\begin{bmatrix} 2 & 1 & 0 & \cdots & 0 \\ 3 & 2 & 1 & \cdots & 0 \\ 0 & 3 & \ddots & \ddots & \vdots \\ \vdots& \vdots & \ddots & \ddots & 1 \\ 0 & 0 & \cdots & 3 & 2 \end{bmatrix} \\ &=2A_{n-1} - \det\begin{bmatrix} 3 & 1 & \cdots & 0 \\ 0 & 2 & \cdots & 0 \\ \vdots& \vdots & \ddots &\vdots \\ 0 & 0 & \cdots & 2 \end{bmatrix} \\ &=2A_{n-1}-3A_{n-2}.\\ \end{aligned}$$

Related Question