Reasoning about remainders and the Möbius function

ceiling-and-floor-functionsinclusion-exclusionmobius-functionprime numbers

This one seems counter intuitive to me but I am not seeing a mistake in my reasoning.

Please let me know if you find one.

Let:

  • $x > 0$ be an integer
  • $\mu(x)$ be the möbius function
  • $x\#$ be the primorial for $x$
  • $r(m,d)$ be the remainder when $d$ divides $m$.

Does this follow:

$1 + \sum\limits_{i|x\#}\dfrac{r(x,i)}{i}\mu(i) = \prod\limits_{p\text{ prime, } p \le x}\left(\dfrac{p-1}{p}\right)x$

Here's my thinking:

(1) $\sum\limits_{i|x\#}\left\lfloor\dfrac{x}{i}\right\rfloor\mu(i) = 1$

This follows from the inclusion-exclusion principle and logic found in step 1 here

(2) $1 + \sum\limits_{i|x\#}\dfrac{r(x,i)}{i}\mu(i) = \sum\limits_{i|x\#}\left(\dfrac{x}{i}\right)\mu(i)$

$1 + \sum\limits_{i|x\#}\dfrac{r(x,i)}{i}\mu(i) = \sum\limits_{i|x\#}\left(\left\lfloor\dfrac{x}{i}\right\rfloor+\dfrac{r(x,i)}{i}\right)\mu(i)$

$= \sum\limits_{i|x\#}\left(\dfrac{x}{i}-\dfrac{r(x,i)}{i} +\dfrac{r(x,i)}{i}\right)\mu(i)$

$=\sum\limits_{i|x\#}\left(\dfrac{x}{i}\right)\mu(i)$

(3) $\sum\limits_{i|x\#}\left(\dfrac{x}{i}\right)\mu(i) = \prod\limits_{p\text{ prime, } p \le x}\left(\dfrac{p-1}{p}\right)x$

$\sum\limits_{i|x\#}\left(\dfrac{x}{i}\right)\mu(i) =\prod\limits_{p\text{ prime, } p \le x}\left(1 – \dfrac{1}{p}\right)x$

$= \prod\limits_{p\text{ prime, } p \le x}\left(\dfrac{p}{p} – \dfrac{1}{p}\right)x = \prod\limits_{p\text{ prime, } p \le x}\left(\dfrac{p-1}{p}\right)x$

Best Answer

As has been stated in a comment, your calculations are correct.

Related Question