Range of Trigonometric function having square root

trigonometry

Finding range of function

$\displaystyle f(x)=\cos(x)\sin(x)+\cos(x)\sqrt{\sin^2(x)+\sin^2(\alpha)}$

I have use Algebric inequality

$\displaystyle -(a^2+b^2)\leq 2ab\leq (a^2+b^2)$

$\displaystyle (\cos^2(x)+\sin^2(x))\leq 2\cos(x)\sin(x)\leq \cos^2(x)+\sin^2(x)\cdots (1)$

And

$\displaystyle -[\cos^2(x)+\sin^2(x)+\sin^2(\alpha)]\leq 2\cos(x)\sqrt{\sin^2(x)+\sin^2(\alpha)}\leq [\cos^2(x)+\sin^2(x)+\sin^2(\alpha)]\cdots (2)$

Adding $(1)$ and $(2)$

$\displaystyle -(1+1+\sin^2(\alpha))\leq 2\cos(x)[\sin(x)+\sqrt{\sin^2(x)+\sin^2(\alpha)}]\leq (1+1+\sin^2(\alpha))$

$\displaystyle -\bigg(1+\frac{\sin^2(\alpha)}{2}\bigg)\leq f(x)\leq \bigg(1+\frac{\sin^2(\alpha)}{2}\bigg)$

I did not know where my try is wrong.

Please have a look on it

But actual answer is $\displaystyle -\sqrt{1+\sin^2(\alpha)}\leq f(x)\leq \sqrt{1+\sin^2(\alpha)}$

Best Answer

I'm going to have a look on your try, and then add a claim and an example which might help you.

From $$-(\cos^2x+\sin^2x)\leqslant 2\cos x\sin x\leqslant \cos^2x+\sin^2x\tag1$$ and $$\small -(\cos^2 x+\sin^2 x+\sin^2\alpha)\leqslant 2\cos x\sqrt{\sin^2x+\sin^2\alpha}\leqslant \cos^2x+\sin^2x+\sin^2\alpha\tag2$$ you got $$-2-\sin^2\alpha\leqslant 2f(x)\leqslant 2+\sin^2\alpha$$ and $$-1-\frac{\sin^2\alpha}{2}\leqslant f(x)\leqslant 1+\frac{\sin^2\alpha}{2}\tag3$$

To see if $(3)$ is the range of $f(x)$, let us see if there is $x$ such that, for any given $\alpha$, $f(x)=1+\dfrac{\sin^2\alpha}{2}$, i.e. $$2f(x)=2+\sin^2\alpha\tag4$$ holds.

From $(1)(2)$, $x$ satisfying $(4)$ has to satisfy both $$2\cos x\sin x= \cos^2x+\sin^2x\tag5$$ and $$2\cos x\sqrt{\sin^2x+\sin^2\alpha}=\cos^2x+\sin^2x+\sin^2\alpha\tag6$$

$(5)$ is equivalent to $$(\cos x-\sin x)^2=0\iff \cos x=\sin x\iff x=\frac{\pi}{4}+m\pi\ (m\in\mathbb Z)$$

$(6)$ is equivalent to $$\cos x\geqslant 0\quad\text{and}\quad \cos^2x=\sin^2x+\sin^2\alpha\iff \cos x\geqslant 0\quad\text{and}\quad \cos(2x)=\sin^2\alpha$$ So, we see that $$(5)\ \ \text{and}\ \ (6)\iff x=\dfrac{\pi}{4}+2m\pi\quad\text{and}\quad \alpha=n\pi\quad (m,n\in\mathbb Z)$$

This means that there is no $x$ such that, for any given $\alpha$, $f(x)=1+\dfrac{\sin^2\alpha}{2}$ holds.

So, $(3)$ is not the range of $f(x)$.


In the following, I'm going to add a claim and an example which might help you.

In the following, I consider only continuous functions.

Claim : If

  • $f(x)\leqslant F(x)\leqslant g(x)\quad$ ($f(x),g(x)$ are not necessarily constant functions)

  • $h(x)\leqslant G(x)\leqslant i(x)\quad$ ($h(x),i(x)$ are not necessarily constant functions)

  • both $f(x)+h(x)$ and $g(x)+i(x)$ are constant functions

  • there is $\alpha$ such that $F(\alpha)=f(\alpha)$ and $G(\alpha)=h(\alpha)$

  • there is $\beta$ such that $F(\beta)=g(\beta)$ and $G(\beta)=i(\beta)$

then, $\operatorname{range}(F(x)+G(x))=\left[f(x)+h(x),g(x)+i(x)\right]$.

Proof :

For $c$ such that $f(x)+h(x)\leqslant c\leqslant g(x)+i(x)$, letting $H(x)=F(x)+G(x)-c$, since we have $$H(\alpha)=F(\alpha)+G(\alpha)-c=f(\alpha)+h(\alpha)-c\leqslant 0$$ $$H(\beta)=F(\beta)+G(\beta)-c=g(\beta)+i(\beta)-c\geqslant 0$$ we can say that, by the intermediate value theorem, there is $\gamma$ such that $$H(\gamma)=0\qquad \text{and}\qquad \min(\alpha,\beta)\leqslant \gamma\leqslant \max(\alpha,\beta).\quad\blacksquare$$


Exmaple for which the claim above works :

Find the range of $\cos x+\dfrac{x^2+8\pi x-2\pi^2}{3x^2+6\pi^2}$.

Let $f(x)=\cos x$ and $g(x)=\dfrac{x^2+8\pi x-2\pi^2}{3x^2+6\pi^2}$. Then, $g'(x)=\dfrac{-8 \pi (x-2\pi)(x+\pi)}{3 (x^2 + 2 \pi^2)^2}$ and $\displaystyle\lim_{x\to\pm\infty}g(x)=\frac 13$.

Since $-1\leqslant f(x)\leqslant 1$ and $-1=g(-\pi)\leqslant g(x)\leqslant g(2\pi)=1$, adding these gives $$-2\leqslant f(x)+g(x)\leqslant 2\tag7$$ Since $f(-\pi)=g(-\pi)=-1$ and $f(2\pi)=g(2\pi)=1$, we can say, by the claim above, that $(7)$ is the range.