Random walk given two random variables

probabilityrandom walk

Each step of a random walk, which starts at $X_0=0$, has a probability$P(X_n=X_{n-1}+1)=P(X_n=X_{n-1}-1)=1/2$. Let Y be another r.v. as the unique positive integer s.t. $X_Y = 0\ \forall \ 0<i<Y$ (it returns to the origin for the first time). Define another random variable $M_k$ as the number of times this random walk visits k before step $Y$ (return to zero). In other words, $M_k=\left| \left\{ i:0\lt i\lt Y, X_i=k \right\} \right|$

Find $P(M_k\ge 1)$ and $P(M_k=n), \forall n>0$

Thank you, any help would be appreciated.

Best Answer

Let $\mathsf{P}_v$ be the law of the random walk $X_n$ starting at $v$ (i.e., $X_0=v$) and let $T_a:=\inf\{n\ge 1:X_n=a\}$. We will use the fact that for $a<0<b$, $$ \mathsf{P}_0(T_a<T_b)=\frac{b}{b-a}. $$

  1. It is clear that $\mathsf{P}_0(M_1\ge 1)=1/2$. For $k>1$, \begin{align} \mathsf{P}_0(M_k\ge 1)&=\frac{1}{2}\mathsf{P}_0(M_k\ge 1\mid X_1=1)+\frac{1}{2}\mathsf{P}_0(M_k\ge 1\mid X_1=-1) \\ &=\frac{1}{2}\mathsf{P}_1(M_k\ge 1)+0=\frac{1}{2}\mathsf{P}_0(T_{k-1}<T_{-1})=\frac{1}{2k}. \end{align}

  2. Using the strong Markov property, \begin{align} \mathsf{P}_0(M_k\ge 2)&=\mathsf{P}_0(M_k\ge 2,M_k\ge 1)=\mathsf{E}_0[\mathsf{P}_k(M_k\ge 1)1\{M_k\ge 1\}] \\ &=(1-\mathsf{P}_0(M_k\ge 1))\mathsf{P}_0(M_k\ge 1). \end{align}

  1. Finally, using induction, for $n\ge 1$, $$ \mathsf{P}_0(M_k\ge n)=(1-\mathsf{P}_0(M_k\ge 1))^{n-1}\mathsf{P}_0(M_k\ge 1). $$ Therefore, $$ \mathsf{P}_0(M_k=n)=(1-\mathsf{P}_0(M_k\ge 1))^{n-1}\mathsf{P}_0(M_k\ge 1)^2. $$

An interesting implication of this result is that $$ \mathsf{E}_0 M_k=\sum_{n\ge 1}^{\infty}\mathsf{P}_0(M_k\ge n)=1. $$

Related Question