Quotient of two integrals $\frac{\int_0^\pi x^3\ln(\sin x)\,dx}{\int_0^\pi x^2\ln(\sqrt{2}(\sin x))\,dx}$

definite integralsintegration

Calculate
$$\frac{\int_0^\pi x^3\ln(\sin x)\,dx}{\int_0^\pi x^2\ln(\sqrt{2}(\sin x))\,dx}$$

In this problem, I'm unable to understand how to start.

I tried applying integration by parts but I couldn't solve it. I also tried the various properties of definite integration but they were of no use.
Maybe applying integration by parts (or DI method) successively may work but it leads to a form of $\frac{\infty}{\infty}$.

Best Answer

We want to prove that: $$\frac{I}{J}=\frac{\int_0^\pi x^3\ln(\sin x)dx} {\int_0^\pi x^2\ln\left(\sqrt 2\sin x\right)dx}=\frac{3\pi}2$$

First, let's take the $I$ integral and perform the $x\to \pi-x$ substitution:

$$I=\int_0^\pi x^3\ln(\sin x)dx\overset{x\to\pi-x}=\int_0^\pi (\pi^3-3\pi^2x+3\pi x^2-x^3)\ln(\sin x)dx$$

In the $J$ integral we had an additional $\ln \sqrt 2$ for the $x^2$ term, thus we can also add it here:

$$\Rightarrow I=\int_0^\pi (\pi^3-3\pi^2x+3\pi x^2-x^3)\ln(\sin x)dx+ 3\pi(\underbrace{\ln \sqrt 2-\ln \sqrt 2}_{=0})\int_0^\pi x^2 dx$$

$$=\pi^3 \underbrace{\int_0^\pi \ln(\sin x)dx}_{=\mathcal L}-3\pi^2 \underbrace{\int_0^\pi x\ln(\sin x)dx}_{=\mathcal K}+3\pi J-I-{\pi^4}\ln \sqrt 2$$

$$\Rightarrow 2I=\left(\pi^3-\frac{3\pi^3}{2}\right)\int_0^\pi \ln(\sin x)dx+3\pi J-{\pi^4}\ln \sqrt 2$$

$$\require{cancel} 2I=\cancel{\frac{\pi^3}{2}\cdot 2\pi \ln \sqrt 2}+3\pi J-\cancel{\pi^4 \ln \sqrt 2}\Rightarrow I=\frac{3\pi}2J$$


Note that above we used: $$\mathcal K=\int_0^\pi x\ln(\sin x)dx\overset{x\to \pi-x}=\int_0^\pi (\pi-x)\ln(\sin x)dx$$

$$\Rightarrow \mathcal K=\frac{\pi}{2}\underbrace{\int_0^\pi \ln(\sin x)dx}_{=\mathcal L}=\frac{\pi}{2}\mathcal L$$

$$\mathcal L=\int_0^\pi \ln(\sin x)dx=\int_0^\frac{\pi}{2} \ln(\sin x)dx+\int_0^\frac{\pi}{2} \ln(\cos x)dx$$

$$=\int_0^\frac{\pi}{2} \ln\left(\sin x\cos x\right)=\int_0^\frac{\pi}{2} \ln(\sin 2x)dx-\int_0^\frac{\pi}{2} \ln 2dx$$

$$=\frac12 \underbrace{\int_0^\pi \ln(\sin x) dx}_{=\mathcal L}-\ln\sqrt 2 \int_0^{\pi} dx\Rightarrow \mathcal L=-2\pi \ln\sqrt 2$$

Related Question