Question about approaching a delta epsilon argument for continuity

calculuscontinuityepsilon-deltareal-analysis

So I was working on a question in Folland's Advanced Calculus (specifically section 1.3 Q5) and I know that I have to show that this function is continuous everywhere except at the origin

5. Let $f(x, y) = \frac{y(y – x^2)}{x^4}$ if $0 < y < x^2$, $f(x, y) = 0$ otherwise. At which point(s) is $f$ discontinuous?

I was able to do this problem by the limit definition of continuity and the fact that it was composed of continuous functions (for when $x \neq 0$) and I was able to show that this function is discontinuous at the origin as well, but I wanted to try to approach this problem using a delta epsilon argument for the two endpoints ($y = 0, y = x^2$). I have not been able to get a good idea of how to go about getting a $\delta$ for this problem. I have thought of bounding it (specifically $\frac{y-x^2}{x^4}$) but that didn't yield anything helpful nor have I been able to reduce it to the Euclidean norm. Any help would be greatly appreciated.

Best Answer

Case $(1)$

Since $f(x_0,0)=0$ for $x \neq 0$, to prove continuity of $f(x,y)$ at $(x_0,0)$, we need to show that

For any $\varepsilon \gt 0$, there exists $\delta \gt 0$ s.t. $$\sqrt {(x-x_0)^2+y^2} \lt \delta \implies \left\lvert \frac{y(y-x^2)}{x^4}\right\rvert \lt \varepsilon.$$

Notice that if $\color{red}{\delta =\min \left( \frac{\left\lvert x_0 \right\rvert}{2}, \frac{\left\lvert x_0 \right\rvert^2}{4}, \frac{\left\lvert x_0 \right\rvert^2\varepsilon}{40} \right)}$, then

$$\sqrt {(x-x_0)^2+y^2} \lt \delta $$ $$\implies \sqrt {(x-x_0)^2+y^2} \lt \frac{\left\lvert x_0 \right\rvert}{2} $$ $$\implies \left\lvert x-x_0 \right\rvert \lt \frac{\left\lvert x_0 \right\rvert}{2} $$

$$\implies \frac{\left\lvert x_0 \right\rvert}{2} \lt x \lt \frac{3\left\lvert x_0 \right\rvert}{2}$$

We also have $$\sqrt {(x-x_0)^2+y^2} \lt \delta $$ $$\implies \sqrt {(x-x_0)^2+y^2} \lt \frac{\left\lvert x_0 \right\rvert^2}{4}$$ $$ \implies \lvert y\rvert \lt \frac{\left\lvert x_0 \right\rvert^2}{4}$$

Also $$\sqrt {(x-x_0)^2+y^2} \lt \delta $$ $$\implies \sqrt {(x-x_0)^2+y^2} \lt \frac{\left\lvert x_0 \right\rvert^2\varepsilon}{40}$$ $$ \implies \lvert y\rvert \lt \frac{\left\lvert x_0 \right\rvert^2 \varepsilon}{40}$$

Therefore \begin{align} \left\lvert f(x,y)-f(x_0,0) \right\rvert & = \left\lvert \frac{y(y-x^2)}{x^4}\right\rvert \\ & \leq \frac{\left\lvert y \right\rvert (\left\lvert y \right\rvert + \left\lvert x \right\rvert^2)}{\left\lvert x \right\rvert^4} \\ & \leq \frac{ \left(\frac{\left\lvert x_0 \right\rvert^2 \varepsilon}{40} \right) ( \frac{\left\lvert x_0 \right\rvert^2}{4} + \frac{\left\lvert 9x_0 \right\rvert^2}{4})}{\frac{\left\lvert x_0 \right\rvert^4}{16}} \\ & = \varepsilon \end{align}

$\therefore f(x,y)$ is continuous at $(x_0, 0)$ where $x_0 \neq 0.$

$$$$ Case $(2)$ For any point $(x_0, y_0)$ where $y_0=x_0^2$ and $x_0 \neq 0$

Case $(i)$ $x_0 \gt 0$

For any $\varepsilon \gt 0$, take $$\color{red}{\delta = \min \left(\frac{x_0}{2}, \frac{y_0}{2}, \varepsilon' \right)}$$ where $$\color{red}{\varepsilon' = \min \left(1, \frac{x_0}{2}, \frac{y_0}{2}, \frac{x_0^4 \varepsilon}{48(1+x_0)y_0} \right)}$$

Then similar to case $(1)$, when $\sqrt {(x-x_0)^2+y^2} \lt \delta \leq \varepsilon'$, we have

$$x_0-\varepsilon' \lt x \lt x_0+\varepsilon'$$ $$x_0^2-2x_0\varepsilon'+\varepsilon'^2 \lt x^2 \lt x_0^2+2x_0\varepsilon'+\varepsilon'^2 \tag{1}$$

Similarly we have $$y_0-\varepsilon' \lt y \lt y_0+\varepsilon' \tag{2}$$

From $(1), (2)$, we have $$y_0-x_0^2-\varepsilon'\left(1+2x_0+ \varepsilon'\right) \lt y-x^2 \lt y_0-x_0^2+\varepsilon'\left(1+2x_0- \varepsilon'\right)$$

$$-\varepsilon'\left(1+2x_0+ \varepsilon'\right) \lt y-x^2 \lt \varepsilon'\left(1+2x_0- \varepsilon'\right)$$ Since $\varepsilon' \leq 1,$ $$\lvert y-x^2\rvert \lt \varepsilon'\left(2+2x_0 \right) $$

Also note that $$\sqrt {(x-x_0)^2+y^2} \lt \delta \leq \frac{x_0}{2} \implies \frac{x_0}{2} \lt x \lt \frac{3x_0}{2}$$

and $$\sqrt {(x-x_0)^2+y^2} \lt \delta \leq \frac{y_0}{2} \implies \frac{y_0}{2} \lt y \lt \frac{3y_0}{2}$$

Therefore

\begin{align} \left\lvert f(x,y)-f(x_0,y_0) \right\rvert & = \left\lvert \frac{y(y-x^2)}{x^4}\right\rvert \\ & = \frac{\left\lvert y \right\rvert \left\lvert y - x^2 \right\rvert}{\left\lvert x \right\rvert^4} \\ & \leq \frac{ \left(\frac{3 y_0 }{2} \right) \left( 2+2 x_0 \right)\varepsilon' }{\frac{ x_0^4 }{16}} \\ & \leq \frac{48(1+x_0)y_0}{x_0^4} \cdot \frac{x_0^4 \cdot \varepsilon}{48(1+x_0)y_0} \\ & = \varepsilon \end{align}

Therefore $f(x,y)$ is continuous at $(x_0, y_0)$ where $x_0 \gt 0$ and $y_0=x_0^2.$

The case $x_0 \lt 0$ and $y_0=x_0^2$ can be dealt with similarly.

Related Question