Quadrilateral area from three sides and two angles

geometry

I know there is already a question about resolving a quadrilateral from three sides and two angles, but I want to ask about a special case. Firstly, two of the sides are known to be of equal size. Secondly, I'm only interested in the area, not in the remaining angles or lengths. Can anyone suggest a simple formula?

enter image description here

Best Answer

Here's a brute-force derivation ...

enter image description here

$$\begin{align} |\square PQRS| &= |\triangle PQR| + |\triangle PRS| \\[4pt] &=\frac12 p q \sin \angle Q + \frac12 d r \sin(\angle R-\angle PRQ) \\[4pt] &=\frac12 \left(\;p q \sin \angle Q + r \left(\;\sin\angle R\cdot d \cos\angle PRQ - \cos\angle R\cdot d\sin\angle PRQ\;\right) \;\right)\\[4pt] &=\frac12 \left(\;p q \sin \angle Q + r \left(\;\sin\angle R\cdot(q-p\cos\angle Q) - \cos\angle R\cdot p\sin\angle Q\;\right) \;\right)\\[4pt] &=\frac12 \left(\;p q \sin \angle Q +qr\sin\angle R - pr \left(\;\sin\angle R \cos\angle Q + \cos\angle R\sin\angle Q\;\right) \;\right)\\[16pt] &=\frac12 \left(\;p q \sin \angle Q +qr\sin\angle R - pr \sin(\angle Q+\angle R)\;\right)\\ \end{align}$$


In the specific case of $p=r$, the formula can be manipulated thusly: $$\begin{align} |\square PQRS| &= \frac{p}{2}\;\left(\;q(\sin Q + \sin R) - p \sin(Q+R) \;\right) \\[4pt] &= p\sin\frac{Q+R}{2}\;\left(\;q\cos\frac{Q-R}{2}- p \cos\frac{Q+R}{2} \;\right) \end{align}$$