Proving the “identity” $\frac{\zeta^{2}(s)}{\zeta(2 s) J(s)}=\frac{\zeta^{2}(-s)}{\zeta(-2 s) J(-s)}$

dirichlet-seriesriemann-zeta

Consider $J(s)$ a Dirichlet series defined by its Euler product as follows
\begin{align*}
J(s)=\prod_{p \in \mathbb{P}}\left(1+\sum_{k=1}^{\infty} \frac{2}{p^{k^{2} s}}\right)
\end{align*}

After some formal manipulations and following the clues of certain patterns, I was able to assemble
the above "identity". Now, I'm not completely sure of its correctness, so I'm asking for a confirmation or else a refutation.


This comes from
$$
\mathcal{\zeta}(s)=\prod_{p \in \mathbb{P}}\left(1+\sum_{k=1}^{\infty} \frac{2}{p^{k^{2} s}}\right) \times \frac{\zeta(2 s)}{\zeta(s)} \times \underbrace{ \prod_{p \in \mathbb{P}} \prod_{k=1}^{\infty} \frac{\left(1+p^{-2 k s}\right)\left(1-p^{-(2 k+1) s}\right)}{\left(1-p^{-2 k s}\right)\left(1+p^{-(2 k+1) s}\right)}}_{B(s)}
$$

and then observing that $B(s)=B(-s)$.

Best Answer

The product for $J(s)$ converges if $\Re s>1$ [@jjagmath is a bit off], and the Jacobi triple product gives \begin{align*} J(s)&=\prod_{p\in\mathbb{P}}\sum_{k\in\mathbb{Z}}p^{-k^2 s} \\&=\prod_{p\in\mathbb{P}}\prod_{n\geqslant 1}(1-p^{-2ns})(1+p^{-(2n-1)s})^2 \\&=\prod_{n\geqslant 1}\prod_{p\in\mathbb{P}}\frac{(1-p^{-2ns})(1-p^{-(4n-2)s})^2}{(1-p^{-(2n-1)s})^2} \\&=\prod_{n\geqslant 1}\frac{\zeta^2\big((2n-1)s\big)}{\zeta(2ns)\zeta^2\big((4n-2)s\big)}. \end{align*} With $\zeta$ analytically continued, the last product converges locally uniformly for $\Re s>0$ and $s$ not a singularity of any term, thus it defines the analytic continuation of $J(s)$ for these values of $s$. The poles of $J(s)$ are nontrivial zeros of $\zeta(ks)$ for even $k$, and we know that any neighborhood of any $s$ with $\Re s=0$ contains infinitely many of the poles. Thus, $\Re s=0$ is the natural boundary of $J(s)$, and the notation "$J(-s)$" makes no sense for $\Re s\geqslant 0$.