Proving that a infinite sum of random variables converges

bmo-martingalesmartingalesprobabilityprobability theory

Let $(X_n)_n$ be a sequence of independent random variables in a probability space $(\Omega,\mathcal{F},P)$ with $E(X_i) = \mu_i$ and $\text{var}(X_i) = \sigma^2_i$. Suppose that $\sum_n \mu_n <\infty$ and $\sum_n\sigma^2_n<\infty$. Then, I want to prove that
$$
\sum_{n\geq 1} X_i <\infty
$$

a.s.

What I am trying to do is to prove that $Y_n = \sum_{k=1}^n X_k$ is a supermartingale and applying Doob's theorem, but I can't since $\mu_i$ can either be positive or negative. Any hint? Thanks.

Best Answer

We consider $Y_{m}:=\sum_{n=1}^{m}(X_{n}-\mu_{n})$, note that $\left\{Y_{m}\right\}_{m\geq 1}$ is a martingale respect to $\mathcal{F}_{m}:=\sigma(X_{1},\ldots,X_{m})$. Indeed, we have that \begin{align} \mathbb{E}[Y_{m+1}|F_{m}]&=\mathbb{E}[Y_{m}+(X_{m+1}-\mu_{m+1})|\mathcal{F}_{m}]\\ &=\mathbb{E}[Y_{m}|\mathcal{F}_{m}]+\mathbb{E}[X_{m+1}|\mathcal{F}_{m}]-\mathbb{E}[\mu_{m+1}|\mathcal{F}_{m}]\\ &=Y_{m}+\mathbb{E_{m+1}}-\mu_{m+1}\\ &=Y_{m}+\mu_{m+1}-\mu_{m+1}\\ &=Y_{m}. \end{align}

We also have that $\left\{Y_{m}\right\}_{m\geq 1}$ is bounded in $L^{2}$, to prove this fact we use the following result:

Let $M=\left\{M_{n}\right\}_{n\geq 1}$ be a martingale, then $M$ is bounded in $L^{2}$ if and only if $\sum_{n=1}^{\infty}\mathbb{E}[(M_{n}-M_{n-1})^{2}]<\infty$.

In that sense, note that \begin{align} \sum_{m=1}^{\infty}\mathbb{E}[(Y_{m}-Y_{m-1})^{2}] &=\sum_{m=1}^{\infty}\mathbb{E}[(X_{m}-\mu_{m})^{2}] \\ &=\sum_{m=1}^{\infty}\sigma_{m}^{2} <\infty. \end{align} So, $\left\{Y_{m}\right\}_{m\geq 1}$ is bounded in $L^{2}$. But we know that bounded in $L^{2}$ implies uniformly integrable (UI), then $\left\{Y_{m}\right\}_{m\geq 1}$ is uniformly integrable (UI). Therefore, $\lim_{m\rightarrow\infty}Y_{m}$ exists a.s, that is, $\sum_{n\geq 1} X_n <\infty$ a.s.