Combinatorics – Proving $\sum_{i=0}^{n}\sum_{j=0}^{n}\binom{i+j}{i}\binom{n-i}{j}\binom{n-j}{i}\ =\ \sum_{k=0}^{n}\binom{2k}{k} $

binomial-coefficientscombinatoricscontest-mathsummation

Prove that $$\sum_{i=0}^{n}\sum_{j=0}^{n}\binom{i+j}{i}\binom{n-i}{j}\binom{n-j}{i}\ =\ \sum_{k=0}^{n}\binom{2k}{k} $$

This one I have no idea how to crack.

Induction doesn't seem to be a sensible idea, I have a list of over 20 binomial identities worth to know in math olympiads, but none of them allow to somehow simplify the product I have here. I tried to find a Vandermonde-type sum here (for many hours), but couldn't remove the sumation indices from the top of binomial.

Best Answer

The following standard identities are used in the answer:

$$\begin{align} \frac{1}{1-x} &= \sum\limits_n x^n, \\ (x+y)^s &= \sum\limits_{i+j=s} \binom{i+j}{i} x^i y^j, \\ \frac{1}{(1-x)^{k+1}} &= \sum\limits_n \binom{n+k}{k} x^n. \end{align}$$

To allow a better separation, let's say that we're given $n$ and $m$, and want to find $$ \sum\limits_{i,j} \binom{i+j}{i} \binom{n-i}{j} \binom{m-j}{i}. $$ This allows us to assume that $i$ and $j$ are fixed, and find the bivariate generating function

$$ \binom{i+j}{i}\sum\limits_{n=i}^\infty \binom{n-i}{j} x^n \sum\limits_{m=j}^\infty \binom{m-j}{i} y^m. $$ Let's find the genfunc of individual sums via $\frac{1}{(1-x)^{k+1}} = \sum\limits_n \binom{n+k}{k} x^n$: $$ \sum\limits_{n=i}^\infty \binom{n-i}{j} x^n = \frac{x^{i+j}}{(1-x)^{j+1}}, $$ thus the full bivariate genfunc of the sum is $$ \sum\limits_{i=0}^\infty \sum\limits_{j=0}^\infty \binom{i+j}{i} \frac{x^{i+j}}{(1-x)^{j+1}}\frac{y^{i+j}}{(1-y)^{i+1}}. $$ Using $s=i+j$, we rewrite the sum via $\sum\limits_{i+j=s} \binom{i+j}{i} x^i y^j = (x+y)^s$ and $\sum\limits_s x^s = \frac{1}{1-x}$ as $$ \frac{1}{1-x}\frac{1}{1-y} \sum\limits_{s=0}^\infty \left(\frac{xy}{1-x}+\frac{xy}{1-y}\right)^s = \frac{1}{(1-xy)(1-x-y)}. $$

What remains now is to find $$\begin{align} [x^n y^n]\frac{1}{(1-xy)(1-x-y)} &= [x^n y^n]\sum\limits_{k=0}^\infty x^k y^k \frac{1}{1-x-y} \\ &= \sum\limits_{k=0}^n [x^k y^k] \frac{1}{1-x-y} \\ &= \sum\limits_{k=0}^n [x^k y^k](x+y)^{2k} \\ &= \sum\limits_{k=0}^n \binom{2k}{k}. \square \end{align}$$

P.S. It also shows that we can evaluate the sum for any $(n, m)$ as

$$\sum\limits_{i,j} \binom{i+j}{i} \binom{n-i}{j} \binom{m-j}{i} = \sum\limits_{k} \binom{n+m-2k}{n-k}. $$

Related Question