Proving multiplicative property of the exponential function from its limit definition

exponential functionreal-analysis

I am trying to show the function defined by:
$$E(x)=\lim_{n\to\infty}\left(1+\frac{x}{n}\right)^n$$
satisfies the property:
$$E(x)E(y)=E(x+y)$$


Assuming $E$ is well defined, I can interchange products and limits (?). We have:

$$\begin{aligned} E(x)E(y) &=\lim_{n\to\infty}\left(1+\frac{x}{n}\right)^n\lim_{n\to\infty}\left(1+\frac{y}{n}\right)^n \\ &=\lim_{n\to\infty}\left[\left(1+\frac{x}{n}\right)\left(1+\frac{y}{n}\right)\right]^n \\ &=\lim_{n\to\infty}\left[1+\frac{x+y}{n}+\frac{xy}{n^2}\right]^n\\ &=\lim_{n\to\infty} \sum_{k=0}^n\binom{n}{k}\left(1+\frac{x+y}{n}\right)^{n-k}\left(\frac{xy}{n^2}\right)^k
\\ & = E(x+y)+\lim_{n\to\infty} \sum_{k=1}^n\binom{n}{k}\left(1+\frac{x+y}{n}\right)^{n-k}\left(\frac{xy}{n^2}\right)^k\end{aligned}$$

This is where I am stuck. I can see that, for any $k$:
$$\binom{n}{k}\left(1+\frac{x+y}{n}\right)^{n-k}\left(\frac{xy}{n^2}\right)^k=\left(\frac{xy}{n}\right)^k\left(1+\frac{x+y}{n}\right)^{n-k}\prod_{r=0}^{k-1}\left(1-\frac{r}{n}\right)\overset{n\to\infty}\to 0$$
But because the sum increases in terms as $n$ increases, I feel like this is not sufficient to argue that the limit of it is $0$. Is that right? If so I'm not sure how to go about it and would appreciate some help.

Best Answer

You do not need to deal with that hard expansion. Here is another way using Squeeze theorem for $xy\ge 0$. The case $xy\le 0$ is also similar. Notice that for any $a>0$ and large enough $n$ we have:$$1+{x+y\over n}\le 1+{x+y\over n}+{xy\over n^2}<1+{x+y\over n}+{xy\over an}=1+{x+y+{xy\over a}\over n}$$using Squeeze theorem we have$$\lim _{n\to \infty}(1+{x+y\over n})^n\le \lim _{n\to \infty}(1+{x+y\over n}+{xy\over n^2})^n\le \lim _{n\to \infty}(1+{x+y+{xy\over a}\over n})^n$$or using the definition $$E(x+y)\le E(x)E(y)\le E(x+y+{xy\over a})$$since this is true for any $a>0$ by tending $a$ to $\infty$ we obtain $$E(x+y)\le E(x)E(y)\le E(x+y)$$which yields to $$E(x+y)=E(x)E(y)$$

Related Question