Proving $\mu$ is a measure on $A$ iff for every decreasing sequence in $A$ $\mu(\cap_{n=1}^{\infty} E_n)= \lim_{n\to \infty} \mu(E_n)$

functional-analysismeasure-theoryreal-analysis

Let $(X,A)$ a measurable space.
$\mu: A\to [0,\infty]$ satisfying:

$\mu(X)<\infty$

$\mu(\emptyset)=0$

$\forall{E,F}\in{A}$ disjoint sets,
$\mu(E\cup F)=\mu(E)+\mu(F)$

Prove:
$\mu$ is a measure on $A$ iff
for every deceasing sequence $E_n$ in $A$ $\mu(\cap_{n=1}^{\infty} E_n)= \lim_{n\to \infty} \mu(E_n)$.

First: $\mu (\emptyset)=0$ (given).
The forward case is obvious since $\mu$ is a measure by assuming, and $\mu(X) < \infty$ implies that $\mu(E) <\infty$ for all $E\in{A}$.
So using a theorem we finish it.

The second condition is to show that for a sequence of disjoint sets $F_n \in{A}$ , $\mu(\cup_{n=1}^{\infty} F_n) =\sum_{n=1}^{\infty} \mu(F_n)$.

Let's define a new decreasing sequence $E_n$.

$E_n=X\setminus (\cup_{i=1}^{n} F_i)=\cap_{i=1}^{n} F_i
^{c}$
.

$\mu(X)=\mu(E_n\cup E_n^{c})=(by 2)=\mu(E_n)+\mu(E_n^{c})$.

$\mu(E_n^{c})=\mu(\cup_{i=1}^{n} F_i)=\mu(X)-\mu(\cap_{i=1}^{n} F_i^{c})$

Now let n approaches infinity so:

$\mu(\cup_{i=1}^{\infty} F_i)=\mu(X)-lim_{n\to \infty} \mu(\cap_{i=1}^{n} F_i^{c})=\mu(X)-lim_{n\to \infty} \mu(X\setminus \cup_{i=1}^{n} F_i)$

Then can I use that $\mu(lim)=lim(\mu)$ ?

(Then I get

$\mu(\cup_{i=1}^{\infty} F_i)=\mu(X)-\mu(lim_{n\to \infty} X\setminus {\cap_{i=1}^{n} F_i)}=\mu(X)-\mu(lim_{n\to \infty} \cup_{i=1}^{n} F_i)$ .

So I can reduce $\mu(X)$ with its limit since $\mu(X)$ is finite (by 2), and use 3 after it.

Can someone help in this.

Best Answer

Hint

Let $\{F_i\}_{ i\in\mathbb N}$ a collection of disjoint sets. \begin{align*} \mu\left(\bigcup_{i=1}^\infty F_i\right)&=\mu(X)-\mu\left(\bigcap_{i=1}^\infty F_i^c\right)\\ &=\mu(X)-\lim_{n\to \infty }\mu\left(\bigcap_{i=1}^n F_i^c\right)\\ &=\mu(X)-\lim_{n\to \infty }\left(\mu(X)-\mu\left(\bigcup_{i=1}^n F_i\right)\right). \end{align*} I let you justify all steps and conclude.

Related Question