Proving $\int_{0}^\infty \left(\frac{1}{(1+ix)^b}-\frac{1}{(1-ix)^b}\right)\sin(ax)\mathrm{d}x =\frac{-ia^{b-1}e^{-a}\pi}{\Gamma[b]} $

definite integralsgamma functionintegrationtrigonometry

In Mathematica, $$\int_{0}^\infty \left(\frac{1}{(1+ix)^b}-\frac{1}{(1-ix)^b}\right)\sin(ax)\mathrm{d}x =\frac{-ia^{b-1}e^{-a}\pi}{\Gamma[b]}$$
I want to prove this, but I can't.
If anyone knows the proof of the above definite integral,
Thank you for your instruction.

Best Answer

$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ $\ds{\bbox[10px,#ffd]{\left.\int_{0}^{\infty}\bracks{{1 \over \pars{1 + \ic x}^{b}} - {1 \over \pars{1 - \ic x}^{b}}}\sin\pars{ax}\,\dd x \,\right\vert_{\ a, b\ >\ 0} = -\,{a^{b - 1}\expo{-a} \over \Gamma\pars{b}}\,\pi\ic}:\ {\Large ?}}$.


\begin{align} &\bbox[10px,#ffd]{\left.\int_{0}^{\infty} \bracks{{1 \over \pars{1 + \ic x}^{b}} - {1 \over \pars{1 - \ic x}^{b}}}\sin\pars{ax}\,\dd x\,\right\vert_{\ a,b\ >\ 0}} \\[5mm] = &\ \ic\,\Im\int_{-\infty}^{\infty}{\sin\pars{ax} \over \pars{1 + \ic x}^{b}}\,\dd x \\[2mm] = &\ \ic\,\Im\int_{-\infty}^{\infty}\sin\pars{ax}\ \overbrace{\bracks{{1 \over \Gamma\pars{b}}\int_{0}^{\infty}t^{b - 1} \expo{-\pars{1 + \ic x}t}\dd t}} ^{\ds{=\ {1 \over \pars{1 + \ic x}^{b}}}}\,\dd x \\[5mm] = &\ {\ic \over \Gamma\pars{b}}\,\Im\int_{0}^{\infty}t^{b - 1}\expo{-t} \int_{-\infty}^{\infty}\bracks{\expo{-\pars{t - a}\ic x} - \expo{-\pars{t + a}\ic x}\over 2\ic}\dd x\,\dd t \\[5mm] = &\ -\,{\ic\pi \over \Gamma\pars{b}}\int_{0}^{\infty}t^{b - 1}\expo{-t} \bracks{\delta\pars{t - a} - \delta\pars{t + a}}\,\dd t \\[5mm] = &\ \bbx{-\,{a^{b - 1}\expo{-a} \over \Gamma\pars{b}}\,\pi\ic} \qquad\qquad a, b > 0 \\[5mm] &\ \mbox{} \end{align}
Related Question