Inequality – Proving (1/2)(u-v)^2[log(1-(2uv)/(u^2+v^2))]^2+(1/2)(u+v)^2[log(1+(2uv)/(u^2+v^2))]^2?4v^2

inequality

I am trying to prove the following log inequality:

$$\frac{1}{2}(u-v)^2 \left[\log\left(1-\frac{2uv}{u^2+v^2}\right)\right]^2+\frac{1}{2}(u+v)^2 \left[\log\left(1+\frac{2uv}{u^2+v^2}\right)\right]^2\leq 4v^2$$
Here $u,v$ are variables.

Things I have tried:

  1. Considering $\log (1+x)\leq x$ for $x>0$. This does not work for $x<0$ though.
  2. Jensen's inequality.

EDIT: On dividing throughout by $u^2$, we can re-write this as

$$\frac{1}{2}(s-1)^2 \left(\log(1-\frac{2s}{1+s^2})\right)^2+\frac{1}{2}(s+1)^2 \left(\log(1+\frac{2s}{1+s^2})\right)^2\leq 4s^2$$

How would one start with an inequality like this?

Best Answer

We need to prove that, for all $s\in \mathbb{R}$ with $s\ne \pm 1$, $$\frac{1}{2}(s-1)^2 \ln^2\left(1-\frac{2s}{1+s^2}\right) + \frac{1}{2}(s+1)^2 \ln^2(1+\frac{2s}{1+s^2})\le 4s^2. \tag{1}$$

It suffices to prove that, for all $s\in \mathbb{R}$ with $s \ne \pm 1$, $$\frac{1}{2}(s+1)^2 \ln^2\left(1+\frac{2s}{1+s^2}\right)\le 2s^2. \tag{2}$$ (Note: If (2) is true, letting $s \to -s$, we have $\frac{1}{2}(s - 1)^2 \ln^2\left(1 - \frac{2s}{1+s^2}\right)\le 2s^2$ which, together with (2), yields (1).)

  • If $s \ge 0$ with $s \ne 1$, it suffices to prove that $$(1 + s) \ln\left(1+\frac{2s}{1+s^2}\right)\le 2s$$ or $$\mathrm{exp}\left(\frac{2s}{1 + s}\right) \ge 1+\frac{2s}{1+s^2}$$ or (using $\mathrm{e}^x \ge 1 + x + \frac12x^2$ for all $x \ge 0$) $$1 + \frac{2s}{1 + s} + \frac12\left(\frac{2s}{1 + s}\right)^2 \ge 1+\frac{2s}{1+s^2}$$ or $$\frac{4s^4}{(1 + s)^2(1 + s^2)}\ge 0$$ which is true.

$\phantom{2}$

  • If $- 1 < s < 0$, it suffices to prove that $$-(1 + s) \ln\left(1+\frac{2s}{1+s^2}\right)\le -2s$$ or $$1+\frac{2s}{1+s^2} \ge \frac{1}{\mathrm{exp}(\frac{-2s}{1+s})}. \tag{3}$$ Using $\mathrm{e}^x \ge 1 + x + \frac12 x^2$ for all $x \ge 0$, we have $$\frac{1}{\mathrm{exp}(\frac{-2s}{1+s})} \le \frac{1}{1 + \frac{-2s}{1+s} + \frac12(\frac{-2s}{1+s})^2} = 1+\frac{2s}{1+s^2}.$$ Thus, (3) is true.

$\phantom{2}$

  • If $s < -1$, it suffices to prove that $$(1 + s) \ln\left(1+\frac{2s}{1+s^2}\right)\le -2s$$ or $$1+\frac{2s}{1+s^2}\ge \frac{1}{\mathrm{e}(\frac{2s}{1 + s})}$$ or (using $\mathrm{e}^x \ge 1 + x + \frac12 x^2$ for all $x \ge 0$) $$1+\frac{2s}{1+s^2} \ge \frac{1}{1 + \frac{2s}{1 + s} + \frac12(\frac{2s}{1 + s})^2}$$ or $$\frac{4s(1 + s)^3}{(1+s^2)(5s^2 + 4s + 1)}\ge 0$$ which is true.

We are done.