Proving $(a+b+c) \Big(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\Big) \leqslant 25$

inequalitysum-of-squares-methodsymmetric-polynomialsuvw

For $a,b,c \in \Big[\dfrac{1}{3},3\Big].$ Prove$:$

$$(a+b+c) \Big(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\Big) \leqslant 25.$$

Assume $a\equiv \text{mid}\{a,b,c\},$ we have$:$

$$25-(a+b+c) \Big(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\Big) =\dfrac{2}{bc} (10bc-b^2-c^2) +\dfrac{c+b}{abc} (a-b)(c-a)\geqslant 0.$$

I wish to find a proof with $a:\neq {\rm mid}\left \{ a, b, c \right \},$ or another proof$?$

Actually$,$ I also found a proof true for all $a,b,c \in \Big[\dfrac{1}{3},3\Big],$ but very ugly.

After clearing the denominators$,$ need to prove$:$

$$f:=22abc-a^2c-a^2b-b^2c-ab^2-bc^2-ac^2\geqslant 0$$

but we have$:$

$$f=\dfrac{1}{32} \left( 3-a \right) \left( 3-b \right) \Big( c-\dfrac{1}{3} \Big) +
\left( 3-a \right) \left( a-\dfrac{1}{3} \right) \left( b-\dfrac{1}{3} \right) +\\+{
\frac {703}{32}}\, \left( a-\dfrac{1}{3} \right) \left( b-\dfrac{1}{3} \right) \left(
c-\dfrac{1}{3} \right) +{\frac {9}{32}} \left( 3-a \right) \left( 3-c
\right) \left( a-\dfrac{1}{3} \right) +\dfrac{1}{4} \left( 3-b \right) \left( 3-c
\right) \left( c-\dfrac{1}{3} \right) +\dfrac{5}{4} \left( 3-c \right) \left( c-\dfrac{1}{3}
\right) \left( a-\dfrac{1}{3} \right) +{\frac {49}{32}} \left( 3-c \right)
\left( b-\dfrac{1}{3} \right) \left( c-\dfrac{1}{3} \right) + \left( 3-b \right)
\left( b-\dfrac{1}{3} \right) \left( c-\dfrac{1}{3} \right) +\\+{\frac {21}{16}}\,
\left( 3-b \right) \left( a-\dfrac{1}{3} \right) \left( b-\dfrac{1}{3} \right) \\+\dfrac{5}{4}\,
\left( 3-a \right) \left( c-\dfrac{1}{3} \right) \left( a-\dfrac{1}{3} \right) +\dfrac{1}{32}
\, \left( 3-a \right) ^{2} \left( 3-c \right) +\dfrac{1}{4}\, \left( 3-b
\right) \left( b-\dfrac{1}{3} \right) ^{2}+\dfrac{1}{32} \left( 3-b \right) ^{2}
\left( a-\dfrac{1}{3} \right) +{\frac {9}{32}} \left( a-\dfrac{1}{3} \right) \left(
b-\dfrac{1}{3} \right) ^{2}+\dfrac{1}{4} \left( a-\dfrac{1}{3} \right) \left( c-\dfrac{1}{3} \right) ^{
2}+\dfrac{1}{4} \left( b-\dfrac{1}{3} \right) \left( 3-b \right) ^{2}+{\frac {9}{32}}
\, \left( b-\dfrac{1}{3} \right) \left( c-\dfrac{1}{3} \right) ^{2}$$

So we are done.

If you want to check my decomposition$,$ please see the text here.

Best Answer

By AM-GM we have $$ \frac{(a+b+c) + (\frac{1}{a}+\frac{1}{b}+\frac{1}{c})}{2} \geq \sqrt{(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}. $$ Note that by the assumption, we have $$ 3 + \frac{1}{3} \geq a + \frac{1}{a} $$ and similarly for the other variables. Therefore $$ 3 \cdot \frac{10}{3} \cdot \frac{1}{2} \geq \sqrt{(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}, $$ as desired.