Proving a formula for the area of a convex quadrilateral with an incircle

euclidean-geometrygeometrytrigonometry

I am preparing for Mathematical Olympiads. I recently stumbled across this Trigonometry Problem and I am unable to solve this after numerous attempts. I couldn't even find solution to it online.

Show that if $ABCD$ is a convex quadrilateral, that has an incircle, and $a$, $b$, $c$, and $d$ are the lengths of the tangents from the vertices to the circle, as shown then;
$$[ABCD]^2 = (a + b + c + d)(abc + abd + acd + bcd).$$

I have tried to drop altitudes from the incenter of the quadrilateral to the sides, and see if I can use some identities to prove the result. Dropping those altitudes showed that the quadrilateral was inscribed about a circle with sides tangent to the circle. I tried to use the fact that the area is equal to the semi-perimeter times the inradius. But I couldn't get any far with it because of the $r^2$ term in the R.H.S.

I am stuck at it currently. Can someone help me out with this problem? Thank You!

Best Answer

Welcome to M.S.E.

This is an amazing problem! You're going right on creating the incircle, tangents, and the altitudes. As a hint, let the four angles at the vertices be equal to $2\alpha,2\beta,2\gamma,2\delta,$ respectively. Let $O$ be the incenter. Then the lines $AO,BO, CO,$ and $DO$ would all bisect the angles of the quadrilateral, and the divided angles will have magnitudes of $\alpha, \beta, \gamma,$ and $\delta.$

Then try to apply trigonometry on the individual triangles formed by the tangency. You'll get; $$\tan{\alpha}=\frac{r}{a},\tan{\beta}=\frac{r}{b},\text{ and } \tan{\gamma}=\frac{r}{c}.$$

But then what is $\tan{(\alpha+\beta+\gamma+\delta)}$ equal to? You can use the tangent addition formula to make a cool observation; $$\dfrac{\tan(\alpha+\beta)+\tan(\gamma+\delta)}{1-\tan(\alpha+\beta)\tan(\alpha+\beta)}=\tan{(\alpha+\beta+\gamma+\delta)}.$$

It will be easy after this. I'll leave it to you to fill in the blanks. Best of Luck!

Let $I$ denote the center of the circle inscribed in quadrilateral $ABCD,$ (i.e. the incenter of quadrilateral $ABCD$). Also let $H_{AB},$ $H_{BC},$ $H_{CD},$ and $H_{DA}$ denote the foot of perpendiculars from $I$ to sides $AB,$ $BC,$ $CD,$ and $DA,$ respectively. We know that the inradius of quadrilateral $ABCD$ is$$IH_{AB}=IH_{BC}=IH_{CD}=IH_{DA}.$$Since $AH_{AB}=AH_{DA}=a,$ $IH_{AB}=IH_{BC},$ and $\angle AH_{AB}I=\angle AH_{DA}I=90^\circ,$ we know that $\triangle AH_{AB}I\cong\triangle AH_{DA}I$ by the SAS congruence theorem. Hence, we have;$$\angle H_{DA}AI=\angle H_{AB}AI.$$Similarly, we can show that $IA,$ $IB,$ $IC,$ and $ID$ bisect $\angle DAB,$ $\angle ABC,$ $\angle BCD,$ and $\angle CDA,$ respectively. We let the angles of quadrilateral $ABCD$ be $2\alpha,$ $2\beta,$ $2\gamma,$ and $2\delta;$ $$\angle DAB=2\alpha$$ $$\angle ABC=2\beta$$ $$\angle BCD=2\gamma$$ $$\angle CDA=2\delta.$$ diagramSince $IA,$ $IB,$ $IC,$ and $ID$ bisect $\angle DAB,$ $\angle ABC,$ $\angle BCD,$ and $\angle CDA,$ respectively, we know that;$$\angle DAI=\angle IAB=\alpha$$$$\angle ABI=\angle IBC=\beta$$$$\angle BCI=\angle ICD=\gamma$$$$\angle CDI=\angle IDA=\delta.$$We know that $\angle DAB+\angle ABC+\angle BCD+\angle CDA=360^\circ,$ hence, we have;$$2\alpha+2\beta+2\gamma+2\delta=360^\circ$$$$\implies \alpha+\beta+\gamma+\delta=180^\circ.$$$$\implies \tan(\alpha+\beta+\gamma+\delta)=\tan{180^\circ}=0.$$Now we use the Tangent Sum Identity, i.e. for any two angles $x$ and $y$;$$\tan(x+y) = \frac{\tan x + \tan y}{1-\tan x \tan y}.$$We have;$$\tan(\alpha+\beta+\gamma+\delta)=\frac{\tan(\alpha+\beta)+\tan(\gamma+\delta)}{1-\tan(\alpha+\beta)\tan(\gamma+\delta)}=0.$$Hence, we know that;$$\tan(\alpha+\beta)+\tan(\gamma+\delta)=0$$Applying the Tangent Sum Identity again gives us;$$\frac{\tan \alpha + \tan \beta}{1-\tan \alpha \tan \beta}+\frac{\tan \gamma + \tan \delta}{1-\tan \gamma \tan \delta}=0\tag{Equation 1}$$Analogously, we also have;$$\frac{\tan \alpha + \tan \delta}{1-\tan \alpha \tan \delta}+\frac{\tan \beta + \tan \gamma}{1-\tan \beta\tan \gamma}=0,\tag{Equation 2}$$and$$\frac{\tan \alpha + \tan \gamma}{1-\tan \alpha \tan \gamma}+\frac{\tan \beta + \tan \delta}{1-\tan \beta\tan \delta}=0.\tag{Equation 3}$$We know that;$$\tan\alpha=\frac{r}{a}$$$$\tan\beta=\frac{r}{b}$$$$\tan\gamma=\frac{r}{c}$$$$\tan\delta=\frac{r}{d}.$$Hence, we have;$$r=a\cdot\tan\alpha=b\cdot\tan\beta=c\cdot\tan\gamma=d\cdot\tan\delta.$$We know that;$$\tan\alpha+\tan\beta=\frac{r}{a}+\frac{r}{b}=\frac{r(a+b)}{ab}.$$and,$$\tan\alpha\tan\beta=\frac{r}{a}\cdot\frac{r}{b}=\frac{r^2}{ab}.$$Hence, we have;\begin{align*}\dfrac{\tan \alpha + \tan \beta}{1-\tan \alpha \tan \beta}&=\dfrac{\frac{r(a+b)}{ab}}{1-\frac{r^2}{ab}}\\&=\dfrac{\frac{r(a+b)}{ab}}{\frac{ab-r^2}{ab}}\\&=\dfrac{r(a+b)}{ab-r^2}.\end{align*}Similarly, we also have;$$\frac{\tan \gamma + \tan \delta}{1-\tan \gamma \tan \delta}=\dfrac{r(c+d)}{cd-r^2},$$$$\frac{\tan \alpha + \tan \delta}{1-\tan \alpha \tan \delta}=\dfrac{r(a+d)}{ad-r^2},$$and$$\frac{\tan \beta + \tan \gamma}{1-\tan \beta\tan \gamma}=\dfrac{r(b+c)}{bc-r^2}.$$Now, we can substitute these values into Equation 1, and Equation 2, we have;$$\frac{\tan \alpha + \tan \beta}{1-\tan \alpha \tan \beta}+\frac{\tan \gamma + \tan \delta}{1-\tan \gamma \tan \delta}=\dfrac{r(a+b)}{ab-r^2}+\dfrac{r(c+d)}{cd-r^2}=0$$and$$\frac{\tan \alpha + \tan \delta}{1-\tan \alpha \tan \delta}+\frac{\tan \beta + \tan \gamma}{1-\tan \beta\tan \gamma}=\dfrac{r(a+d)}{ad-r^2}+\dfrac{r(b+c)}{bc-r^2}=0.$$Since in these two Equations, the two values add up to 0, we can reciprocate each value and yet keep their sum the same, we have;$$\dfrac{ab-r^2}{r(a+b)}+\dfrac{cd-r^2}{r(c+d)}=0$$and$$\dfrac{ad-r^2}{r(a+d)}+\dfrac{bc-r^2)}{r(b+c)}=0.$$Simplifying these Equations gives;$$\begin{align*} & \dfrac{(ab-r^2)(c+d)}{r(a+b)(c+d)}+\dfrac{(cd-r^2)(a+b)}{r(a+b)(c+d)}=0\\ \implies & \dfrac{(ab-r^2)(c+d)+(cd-r^2)(a+b)}{r(a+b)(c+d)}=0\\ \implies & (ab-r^2)(c+d)+(cd-r^2)(a+b)=0\\ \implies & abc+abd-(c+d)r^2+acd+bcd-(a+b)r^2=0 \end{align*}$$$$\begin{align*} \implies abc+abd+acd+bcd & =(a+b)r^2+(c+d)r^2 \\ & =(a+b+c+d)r^2 \end{align*}$$$$\implies r^2=\frac{abc+abd+acd+bcd}{a+b+c+d}.\tag{Equation 4}$$We know that;$$\begin{align*}[ABCD]&=[AIB]+[BIC]+[CID]+[DIA]\\&=\frac{1}{2}AB\cdot r+\frac{1}{2}BC\cdot r+\frac{1}{2}CD\cdot r+\frac{1}{2}DA\cdot r\\&=\frac{1}{2}(AB+BC+CD+DA)\cdot r\\&=\frac{AB+BC+CD+DA}{2}\cdot r\\&=\frac{a+b+b+c+c+d+d+a}{2}\cdot r\\&=(a+b+c+d)\cdot r.\end{align*}$$Hence, we have;$$[ABCD]^2=r^2(a+b+c+d)^2.$$By Equation 4, we know that;$$\implies r^2=\frac{abc+abd+acd+bcd}{a+b+c+d}.$$Substituting this value in Equation 4 gives us;$$\begin{align*}[ABCD]^2&=r^2(a+b+c+d)^2\\&=(a+b+c+d)^2\cdot\frac{abc+abd+acd+bcd}{a+b+c+d}\\&=(a+b+c+d)(abc+abd+acd+bcd),\end{align*}$$as desired.

Related Question