Prove there is a unique set $A$ such that for every set $B$, $A \cup B=B$ using Natural Deduction.

elementary-set-theoryfirst-order-logicnatural-deductionsolution-verification

I added $\forall Y(\emptyset \cup Y = Y)$ as a premise; the exercise does not provide it.

$
\def\fitch#1#2{\quad\begin{array}{|l}#1\\\hline#2\end{array}}
\def\Ae#1{\qquad\mathbf{\forall E} \: #1 \\}
\def\Ai#1{\qquad\mathbf{\forall I} \: #1 \\}
\def\Ee#1{\qquad\mathbf{\exists E} \: #1 \\}
\def\Ei#1{\qquad\mathbf{\exists I} \: #1 \\}
\def\R#1{\qquad\mathbf{R} \: #1 \\}
\def\ci#1{\qquad\mathbf{\land I} \: #1 \\}
\def\ce#1{\qquad\mathbf{\land E} \: #1 \\}
\def\ii#1{\qquad\mathbf{\to I} \: #1 \\}
\def\ie#1{\qquad\mathbf{\to E} \: #1 \\}
\def\be#1{\qquad\mathbf{\leftrightarrow E} \: #1 \\}
\def\bi#1{\qquad\mathbf{\leftrightarrow I} \: #1 \\}
\def\qi#1{\qquad\mathbf{=I}\\}
\def\qe#1{\qquad\mathbf{=E} \: #1 \\}
\def\ne#1{\qquad\mathbf{\neg E} \: #1 \\}
\def\ni#1{\qquad\mathbf{\neg I} \: #1 \\}
\def\IP#1{\qquad\mathbf{IP} \: #1 \\}
\def\x#1{\qquad\mathbf{X} \: #1 \\}
\def\DNE#1{\qquad\mathbf{DNE} \: #1 \\}
$

$
\fitch{1.\, \forall Y(\emptyset \cup Y = Y)}{
2.\, \exists X\forall Y(X \cup Y = Y) \Ei{1}
\fitch{3.\, \forall Y(C \cup Y=Y)}{
\fitch{4.\, \forall Y(D \cup Y=Y)}{
5.\, C \cup D=D \Ae{3}
6.\, D \cup C = C \Ae{4}
\vdots\\
C = D
}\\
\forall Y(D \cup Y=Y) \to C=D\\
\forall Z(\forall Y(Z \cup Y=Y) \to C=Z)\\
k. \forall Y(C \cup Y=Y) \land \forall Z(\forall Y(Z \cup Y=Y) \to C=Z) \ci{4,k}
k+1.\, \exists X[\forall Y(X \cup Y=Y) \land \forall Z(\forall Y(Z \cup Y=Y) \to X=Z] \Ei{k+1}
}\\
\exists X[\forall Y(X \cup Y=Y) \land \forall Z(\forall Y(Z \cup Y=Y) \to X=Z] \Ee{3-k+1}
}
$

Is this proof skeleton correct ? Am I going in a good direction ?

EDIT:

Following advice in the comments, I made another version including 3 axioms as premises and deriving $\forall Y(\emptyset \cup Y = Y)$. I omitted the instantiation of the axioms. Going to include it in a final version.

$
\fitch{1.\, \forall x\neg(x \in \emptyset)\\2.\,\forall A\forall B \forall x(x \in A \cup B \leftrightarrow a \in A \lor a \in B)\\3.\,\forall A\forall B(\forall x(x \in A \leftrightarrow x \in B) \to A=B)}{
\fitch{4.\, a \in \emptyset \cup A}{
5.\, a \in \emptyset \lor a \in A \\
6.\, \neg(a \in \emptyset)\\
7.\,a \in A
}\\
\fitch{8.\, a \in A}{
9.\, a \in A\\
10.\,a \in \emptyset \lor a \in A\\
11.\,a \in \emptyset \cup A
}\\
12.\, a \in \emptyset \cup A \leftrightarrow a \in A\\
13.\,\, \forall Y(\emptyset \cup Y=\emptyset) \\
14.\, \exists X\forall Y(X \cup Y=X) \\
\fitch{\forall Y(C \cup Y=Y)}{
\fitch{4.\, \forall Y(D \cup Y=Y)}{
5.\, C \cup D=D \Ae{3}
6.\, D \cup C = C \Ae{4}
\vdots\\
C = D
}\\
\forall Y(D \cup Y=Y) \to C=D\\
\forall Z(\forall Y(Z \cup Y=Y) \to C=Z)\\
k. \forall Y(C \cup Y=Y) \land \forall Z(\forall Y(Z \cup Y=Y) \to C=Z)
k+1.\, \exists X[\forall Y(X \cup Y=Y) \land \forall Z(\forall Y(Z \cup Y=Y) \to X=Z] \Ei{}
}\\
\exists X[\forall Y(X \cup Y=Y) \land \forall Z(\forall Y(Z \cup Y=Y) \to X=Z] \Ee{}
}
$

P.S.: It is Example 3.6.2 of the book "How to Prove It" by Daniel Velleman.

Best Answer

Clearly empty set $\cup$ A = A for all sets A.
Assume for all sets A, E $\cup$ A = A.
Thus E = E $\cup$ empty set = empty set.

Exercise. Prove the dual theorem that
the universal set U is the unique set with
U $\cap$ A = A, for all sets A.

Related Question