Prove the Littlewood-Paley characterization of Holder norm

harmonic-analysislittlewood-paley-theorypartial differential equations

Here our aim is to prove that the Holder norm
\begin{equation}
\|f\|_{\Lambda_\gamma}:=\|f\|_{L^{\infty}}+\sup _{x \neq y \in \mathbb{R}^n} \frac{|f(x)-f(y)|}{|x-y|^\gamma}
\end{equation}

is equivalent to
\begin{equation}
\|f\|_{\Lambda_\gamma} \approx\left\|P_{\leq 0} f\right\|_{L^{\infty}}+\sup_{k>0} 2^{k \gamma}\left\|P_k f\right\|_{L^{\infty}},
\end{equation}

where $P_k$ is the Littlewood-Paley projection. I am now stuck in the proof of
\begin{equation}
\|f\|_{L^{\infty}}+\sup _{x \neq y \in \mathbb{R}^n} \frac{|f(x)-f(y)|}{|x-y|^\gamma}
\lesssim \left\|P_{\leq 0} f\right\|_{L^{\infty}}+\sup_{k>0} 2^{k \gamma}\left\|P_k f\right\|_{L^{\infty}}.
\end{equation}

In fact, we let $f(x) = P_{\le 0} f+ \sum_{k>0} P_k f$. The previous one $P_{\le 0} f$ is easy to be controlled. As for $\sum_{k>0} P_k f$, we found that
\begin{align*}
\frac{|P_kf(x)-P_k f(y)|}{|x-y|^\gamma}
& \simeq \frac{|P_k^2f(x)-P_k^2 f(y)|}{|x-y|^\gamma} \\
& =\Big| \int \frac{m_k (x-z) -m_k(y-z)}{|x-y|^\gamma} P_kf(z) dz \Big| \\
& = \Big| \int \frac{|m_k (x-z) -m_k(y-z)|}{|x-y|^\gamma} dz \Big| \cdot \| P_k f \|_\infty,
\end{align*}

where $m_k(x)= 2^{kn} \phi (2^k x)$ and $\hat{\phi}$ is support on an annulus $1 \le |x| \le 4$. Then we see that
\begin{align*}
\int \frac{|m_k (x-z) -m_k(y-z)|}{|x-y|^\gamma} dz
& = \int_{\mathbb{R}^N} \frac{|m_k (z+h) -m_k(z)|}{|h|^\gamma} dz \\
& \lesssim |h|^{1-\gamma}\int_{\mathbb{R}^N} \int_0^1 |\nabla m_k(z+th) dtdz \\
& \lesssim |h|^{1-\gamma} 2^{k}, \quad \text{where} h=y-x,
\end{align*}

moreover, we also have
\begin{align*}
\int \frac{|m_k (x-z) -m_k(y-z)|}{|x-y|^\gamma} dz
& \lesssim |h|^{-\gamma},
\end{align*}

so we see that
\begin{align*}
\int \frac{|m_k (x-z) -m_k(y-z)|}{|x-y|^\gamma} dz
& \lesssim
\min\{|h|^{1-\gamma} 2^k, |h|^{-\gamma} \} \simeq 2^{k \gamma},
\end{align*}

hence we see that we can only get that
\begin{align*}
\frac{|P_kf(x)-P_k f(y)|}{|x-y|^\gamma}
& = \Big| \int \frac{|m_k (x-z) -m_k(y-z)|}{|x-y|^\gamma} dz \Big| \cdot \| P_k f \|_\infty \lesssim 2^{k \gamma} \| P_k f \|_\infty,
\end{align*}

but then we can only get that
\begin{align*}
\sup_{x\not = y}\frac{|\sum_{k>0} P_k f(x)- \sum_{k>0} P_k f(y)|}{|x-y|^\gamma}
\lesssim \sum_{k >0} 2^{k \gamma} \| P_k f \|_\infty,
\end{align*}

and we cannot further bound it by $\sup_{k > 0 }2^{k \gamma} \| P_k f \|_\infty$.

So I wonder is there any improvement about the proof? A simple idea is that I want to improve the estimate to
\begin{align*}
\frac{|P_kf(x)-P_k f(y)|}{|x-y|^\gamma}
& \lesssim 2^{k \gamma'} \| P_k f \|_\infty,
\end{align*}

for some $\gamma' < \gamma$. But roughly speaking, the above quotation term can be regarded as $D^\gamma P_k f(x)$, so it is almost equal to $2^{k \gamma} P_k(x)$, which I am a little confused.

Best Answer

Follow your proof, $$\sup_{h\ne 0}\frac{|\sum_{k>0}P_kf(x+h)-\sum_{k>0}P_kf(x)|}{|h|^\gamma} \le \sup_{h}\sum_{k>0} \min(|h|^{1-\gamma}2^k, |h|^{-\gamma})\Vert P_kf\Vert_\infty,$$ where one pick an $h$ uniformly for all coefficients $\min(|h|^{1-\gamma}2^k, |h|^{-\gamma})$. Then for a large $k$, this coefficient is far less than $2^{k\gamma}$. One can in fact show that $\sum_{k>0} \min(|h|^{1-\gamma}2^k2^{-k\gamma}, |h|^{-\gamma}2^{-k\gamma})$ is bounded.

Related Question