Prove the equality of Parseval

calculusfourier analysisharmonic-analysis

Let $f$ a continuous function in $[-L,L]$ with $f'$ piecewise continuous. Suppose $f(-L)=f(L)$, then the coefficients of fourier of $f$ in $[-L,L]$ satisfy:

$$2a_0+\sum_{n=1}^\infty (a_n^2+b_n^2)=\frac{1}{L}\int_{-L}^{L}f^2(x)dx.$$

My attempt

As $f$ is integrable in $[-L,L]$ the coefficients of fourier serie is

$$a_0=\frac{1}{2L}\int\limits_{-L}^{L}f(x)dx$$
$$a_n=\frac{1}{L}\int\limits_{-L}^{L}f(x)\cos(\frac{n\pi x}{L})dx$$
$$b_n=\frac{1}{L}\int\limits_{-L}^{L}f(x)\sin(\frac{n\pi x}{L})dx.$$

Let the N-esima partial sum of fourier serie of $f$

$$S_N(x)=a_0+\sum\limits_{n=1}^{N}[a_n\cos(\frac{n\pi x}{L})+b_n\sin(\frac{n\pi x}{L})].$$

I know by Bessel inequality

$$2a_0+\sum_{n=1}^\infty (a_n^2+b_n^2)\leq\frac{1}{L}\int_{-L}^{L}f^2(x)dx.$$

Here I'm stuck. Can someone help me?

Best Answer

Hint: Just consider it intuitively. Suppose that $$f=\sum_{n=1}^{N}b_n\sin\left(\frac{\pi n x}{L}\right)$$ then $$f^2=\sum_{n,k=1}^{N}b_{n}b_{k}\sin\left(\frac{\pi n x}{L}\right)\sin\left(\frac{\pi k x}{L}\right).$$ Since $$\int_{-L}^L \sin\left(\frac{\pi n x}{L}\right)\sin\left(\frac{\pi k x}{L}\right)dx=L\delta_{n,k}$$ we have that in this case $$\int_{-L}^L f^2 dx=L\sum_{n,k=1}^{N}b_{n}b_{k}\delta_{n,k}=L\sum_{n=1}^N b_n^2.$$ The square of the function will sum over all possible pairs, and pairs that aren't the same will integrate to zero. How can you extend this intuition for finite sums to infinite sums? The argument is also the same when you toss in cosines and a constant term.

Related Question