Diophantine Equations – Proving No Positive Integer Solutions for (x+y)(x+y+2)=10xy

diophantine equationsmodular arithmetic

How to prove that the Diophantine equation $$(x+y)(x+y+2)=10xy\quad (1)$$ has no positive integer solutions

First attempt as below is wrong :is to rewrite this equation as $$y^2 + y(2-8x) + x^2 + 2x = 0$$. The discriminant is $\Delta = 4(15x^2 – 10x + 1)$. Therefore, $y = 4x – 1 \pm \sqrt{15x^2 – 10x + 1}$. If a solution of the equation (1) exists for some integers $x, y > 0$, then $15x^2 – 10x + 1$ must be a perfect square. However, its discriminant is not zero, hence the equation (1) has no positive integer solutions for $x$ and $y$.

Second adempt : $15x^2 – 10x + 1$ must be a perfect square, Wolfram gives the solution of the equation $15x^2 – 10x + 1=m^2$. We can remark that all $x$ solutions are <0, which shows that no positive solution can exist. But can we retrieve Wolfram's results? I don't know.

Best Answer

The Diophantine equation to check on is

$$(x + y)(x + y + 2) = 10xy \tag{1}\label{eq1A}$$

Note that, by inspection, I got $(x, y) \in \{(0, 0), (0, -2), (-2, 0)\}$ being integer solutions, but not positive ones. Since there are integer solutions, doing things like factoring and checking for a perfect square discriminant will succeed (e.g., with $15x^2 - 10x + 1$, it's $1$ for $x = 0$ and $81 = 9^2$ for $x = -2$, with your Wolfram Alpha results show other, only negative, results)). One way to specifically show there are no positive integer solutions is to assume they exist but then use positive divisibility constraints (which assume all of the factors are non-negative), such as with my \eqref{eq4A}, \eqref{eq5A} and \eqref{eq6A} below, to show there are no valid results.


First, since $x + y$ and $x + y + 2$ have the same parity and $10xy$ is even, then both of the LHS factors of \eqref{eq1A} must be even. Thus, $x$ and $y$ have the same parity. They can't both be odd since the LHS has at least $2$ factors of $2$ but the RHS would have only $1$ factor of $2$. This means $x$ and $y$ must both be even. As such, there's a positive integer $d$ where

$$\gcd(x, y) = 2d \;\;\to\;\; x = 2dx_1, \; y = 2dy_1, \; \gcd(x_1, y_1) = 1 \tag{2}\label{eq2A}$$

Substituting this into \eqref{eq1A} and dividing both sides by $4d$ gives

$$(x_1 + y_1)(dx_1 + dy_1 + 1) = 10dx_{1}y_{1} \tag{3}\label{eq3A}$$

Since $d \mid (x_1 + y_1)(dx_1 + dy_1 + 1)$, but $\gcd(d, dx_1 + dy_1 + 1) = 1$, we have

$$d \mid x_1 + y_1 \tag{4}\label{eq4A}$$

Also, $x_1 + y_1 \mid 10d(x_{1}y_{1})$, but $\gcd(x_1, y_1) = 1$ means that $\gcd(x_1 + y_1, x_{1}y_{1}) = 1$, so

$$x_1 + y_1 \mid 10d \tag{5}\label{eq5A}$$

Note that \eqref{eq4A} and \eqref{eq5A}, along with \eqref{eq3A}, means there are positive integers $a$ and $b$ with

$$x_1 + y_1 = ad, \;\; d(x_1 + y_1) + 1 = bx_{1}y_{1}, \;\; ab = 10 \tag{6}\label{eq6A}$$

Substituting the LHS of \eqref{eq6A} into the middle part gives

$$\begin{equation}\begin{aligned} d(ad) + 1 & = b(ad - y_1)y_1 \\ ad^2 + 1 & = (ab)dy_1 - by_1^2 \\ by_1^2 - 10dy_1 + (ad^2 + 1) & = 0 \end{aligned}\end{equation}\tag{7}\label{eq7A}$$

Treating this as a quadratic in $y_1$, the discriminant, i.e.,

$$100d^2 - 4b(ad^2 + 1) = 100d^2 - 4(10)d^2 - 4b = 60d^2 - 4b = 4(15d^2 - b) \tag{8}\label{eq8A}$$

must be a perfect square. Thus,

$$15d^2 - b \tag{9}\label{eq9A}$$

must also be a perfect square. From the RHS of \eqref{eq6A}, we get these cases to check for $b$:

  1. Since $15d^2 - 1 \equiv 2\pmod{3}$, it's not a perfect square. In addition, if $d$ is odd, then $15d^2 - 1 \equiv 7(1) - 1 \equiv 6 \pmod{8}$, while if $d$ is even, then $15d^2 - 1 \equiv 3 \pmod{4}$, with neither being possible.

  2. With $15d^2 - 2 \equiv 3 \pmod{5}$, it can't be a perfect square. Another method is to note that $d$ can't be even since it would have only $1$ factor of $2$, so $d$ is odd. However, then $15d^2 - 2 \equiv 7(1) - 2 \equiv 5 \pmod{8}$.

  3. Checking $15d^2 - 5$, we get $d$ can't be even because then $15d^2 - 5 \equiv 3 \pmod{4}$. However, $d$ being odd means $15d^2 - 5 \equiv 7(1) - 5 \equiv 2 \pmod{8}$, which is also never true for perfect squares. Alternatively, $15d^2 - 5 = 5(3d^2 - 1)$, so $5 \mid 3d^2 - 1$. However, $d^2 \equiv 0, 1, 4 \pmod{5}$, with $5 \nmid 3d^2 - 1$ for each congruence.

  4. Finally, $15d^2 - 10 \equiv 2 \pmod{3}$, so this can't be a perfect square either. Another way to show this is that $d$ can't be even because $15d^2 - 10$ would have only one factor of $2$, but $d$ being odd means that $15d^2 - 10 \equiv 7(1) - 2 \equiv 5 \pmod{8}$.

Since these all result in a non-perfect square discriminant, there are no positive integer solutions for $d$ and $y_1$ in \eqref{eq7A} and, thus, also for $x$ and $y$ in \eqref{eq1A}.

Related Question