Prove that $\sum_{1\le i<j\le n}\frac{x_ix_j}{(1-x_i)(1-x_j)} \le \frac{n(n-1)}{2(2n-1)^2}$

inequalitysummation

Let $n \ge 2$ be a an integer and $x_1,…,x_n$ are positive reals such that $$\sum_{i=1}^nx_i=\frac{1}{2}$$
Prove that
$$\sum_{1\le i<j\le n}\frac{x_ix_j}{(1-x_i)(1-x_j)}\le \frac{n(n-1)}{2(2n-1)^2}$$

Here is the source of the problem (in french) here

Edit:

I'll present my best bound yet on $$\sum_{1\le i<j\le 1}\frac{x_ix_j}{(1-x_i)(1-x_j)}=\frac{1}{2}\left(\sum_{k=1}^n\frac{x_k}{1-x_k}\right)^2-\frac{1}{2}\sum_{k=1}^n\frac{x_k^2}{(1-x_k)^2}$$
This formula was derived in @GCab's Answer.

First let $a_k=x_k/(1-x_k)$
so we want to prove
$$\left(\sum_{k=1}^na_k\right)^2-\sum_{k=1}^na_k^2\le \frac{n(n-1)}{(2n-1)^2}$$
But since $$\frac{x_k}{1-x_k}<2x_k\implies \sum_{k=1}^na_k<1 \quad (1)$$
Hence $$\left(\sum_{k=1}^na_k\right)^2\le \sum_{k=1}^na_k$$
Meaning $$\left(\sum_{k=1}^na_k\right)^2-\sum_{k=1}^na_k^2\le\sum_{k=1}^na_k(1-a_k)$$

Now consider the following function $$f(x)=\frac{x}{1-x}\left(1-\frac{x}{1-x}\right)$$

$f$ is concave on $(0,1)$ and by the tangent line trick we have $$f(x)\le f'(a)(x-a)+f(a)$$

set $a=1/2n$ to get $$a_k(1-a_k)\le\frac{4n^2\left(2n-3\right)}{\left(2n-1\right)^3}\left(x_k-\frac{1}{2n}\right)+ \frac{2(n-1)}{(2n-1)^2}$$
Now we sum to finish $$\sum_{k=1}^na_k(1-a_k)\le \frac{2n(n-1)}{(2n-1)^2}$$

Maybe by tweaking $(1)$ a little bit we can get rid of this factor of $2$

Best Answer

Edit. Eventhough I had in mind the version of the ACM I needed, it all messed up when I tried to find a reference. As for the valid version, I will refer to Vasile Cirtoaje's Algebraic Inequalities. Old and new Methods, p. $267$.


We will employ a powerful technique developed by Vasile Cirtoaje back in $2006$ called the Arithmetic Compensation Method (see, for instance, this document).

Let to this end $$F(x_1, \ldots, x_n):=\sum_{1\leqslant i<j\leqslant n}\frac{x_ix_j}{(1-x_i)(1-x_j)}$$ which is clearly symmetric and continuous on $S:=\left\{(x_1, \ldots,x_n)\mid \sum_{i=1}^n x_i=\frac12, \forall i: x_i\geqslant 0\right\}$. We will now refer to the Remark 1.1 from the document linked above, which basically states that

If $$F(x_1,x_2,x_3,\ldots,x_n)>F\left(\frac{x_1+x_2}2, \frac{x_1+x_2}{2}, x_3,\ldots,x_n\right)\label{(i)}\tag{i}$$ implies $F(x_1,x_2,x_3,\ldots,x_n)\leqslant F(0, x_1+x_2, x_3, \ldots, x_n)$, then $$F(x_1,x_2,x_3,\ldots,x_n)\leqslant \underset{1\leqslant k\leqslant n}\max F\left(\frac1{2k}, \ldots, \frac1{2k},0,\ldots ,0\right)$$

Notice that (\ref{(i)}) is equivalent to (where we will denote, for brevity, $y:=\frac{1}2(x_1+x_2)$) \begin{align*} \frac{x_1x_2}{(1-x_1)(1-x_2)}-\frac{y^2}{(1-y)^2}+\left(\frac{x_1}{1-x_1}+\frac{x_2}{1-x_2}-\frac{2y}{1-y}\right)\sum_{i=3}^n \frac{x_i}{1-x_i}>0\\ \iff \frac{y^2-x_1x_2}{(1-x_1)(1-x_2)(1-y)^2}\left[2y-1+2(1-y)\sum_{i=3}^n \frac{x_i}{1-x_i}\right]>0\\ \iff 2y-1+2(1-y)\sum_{i=3}^n \frac{x_i}{1-x_i}>0 \end{align*}

Where the last equivalence follows from $y^2-x_1x_2\geqslant 0$. We will now turn to the second inequality: \begin{align*} F(x_1,x_2,x_3,\ldots,x_n)- F(0, x_1+x_2, x_3, \ldots, x_n)\leqslant0\\ \iff \frac{x_1x_2}{(1-x_1)(1-x_2)}+\left(\frac{x_1}{1-x_1}+\frac{x_2}{1-x_2}-\frac{2y}{1-y}\right)\sum_{i=3}^n \frac{x_i}{1-x_i}\leqslant0\\ \iff \frac{x_1x_2}{(1-x_1)(1-x_2)(1-2y)}\left[1-2y+2(y-1)\sum_{i=3}^n \frac{x_i}{1-x_i}\right]\leqslant 0\\ \end{align*}

Which is easily seen to follow from (\ref{(i)}). Thus, we conclude that \begin{align*} F(x_1,x_2,x_3,\ldots,x_n)&\leqslant \underset{1\leqslant k\leqslant n}\max F\left(\frac1{2k}, \ldots, \frac1{2k},0,\ldots ,0\right)\\ &= \underset{1\leqslant k\leqslant n}\max \binom{k}{2}\frac{1}{(2k-1)^2}\\ &= \underset{1\leqslant k\leqslant n}\max \frac{k(k-1)}{2(2k-1)^2} \end{align*}

But $f: x\mapsto \frac{x(x-1)}{2(2x-1)^2}$ is increasing on $[1,\infty)$, and, hence, the result follows.

Remark. Based on the difficulty of the other contest problems, this solution seems a bit overkill to me, but I have failed in the attempt to find a simpler method, since most well-known inequalities work in the other direction...