Prove that $\sum \tan \frac{n+1}{n^2}$ diverges

calculuslimitsreal-analysissequences-and-series

Prove that

$$\sum\tan \frac{n+1}{n^2}$$

diverges.

I know that the solution should be using the limit comparison test with $1/n$.

Therefore, I think that in the limit:

$$
\lim_{n \to \infty} \frac{\tan \frac{n+1}{n^2}}{1/n}
$$

I should get a positive finite value… but, its not working, I don't know how to solve that limit…

I tried using L'Hospital, but its getting complicated:
$$
\frac{\frac{1}{\cos^2\frac{n+1}{n^2}}(\frac{n+1}{n^2})'}{-(1/n^2)}
$$

Help.

Thank you.

Best Answer

Let $L=\lim_{n \rightarrow \infty} \frac{|\tan \frac{n+1}{n^2}|}{\frac{1}{n}}$

Then we have

$L=\lim_{n \rightarrow \infty} \frac{1}{|\cos\frac{n+1}{n^2}|} \frac{|\sin\frac{n+1}{n^2}|}{\frac{1}{n}}$

$=\lim_{n \rightarrow \infty} \frac{1}{|\cos\frac{n+1}{n^2}|}\frac{n+1}{n} \frac{|\sin\frac{n+1}{n^2}|}{\frac{n+1}{n}\frac{1}{n}}$

$=\bigg(|\frac{1}{\cos\lim_{n \rightarrow \infty}\frac{n+1}{n^2}}|\bigg)\bigg(\lim_{n \rightarrow \infty}\frac{n+1}{n}\bigg) \bigg(|\lim_{n \rightarrow \infty} \frac{\sin\frac{n+1}{n^2}}{\frac{n+1}{n^2}}| \bigg)$

$=(1)(1)\bigg(|\lim_{n \rightarrow \infty} \frac{\sin\frac{n+1}{n^2}}{\frac{n+1}{n^2}}| \bigg)$.

Let $x=\frac{n+1}{n^2}.$ Then $x \rightarrow 0$ as $n \rightarrow \infty$. It follows that

$L=|\lim_{x \rightarrow 0} \frac{\sin(x)}{x}|=1.$

This proves that $\sum |\tan \frac{n+1}{n^2}|$ converges. It follows that $\sum \tan \frac{n+1}{n^2}$ converges.

Please let me know if there is any clarification necessary.

Related Question