Prove that solution of diffusion equation is odd (resp. even) when init. conditions are odd (even).

partial differential equations

Assumptions:

$u(x,t)$ is solution of diffuse equation for $-\infty < x < \infty, t \geq 0$.

$\phi(x) = u(x,0)$ is even, resp. odd function.

I need to prove that for even: $u(x,t)=u(-x,t)$ and odd $u(x,t)=-u(-x,t)$.

I have:

EVEN:

$
\begin{align*}
u(x,t) &= \frac{1}{\sqrt{4\pi kt}} \int_{-\infty}^{\infty} e^{\frac{-(x-y)^2}{4kt}} \phi(y)dy \\
&= \frac{1}{\sqrt{4\pi kt}} \int_{-\infty}^{\infty} e^{\frac{-(x-y)^2}{4kt}} \phi(-y)dy \\
&= -\frac{1}{\sqrt{4\pi kt}} \int_{-\infty}^{\infty} e^{\frac{-(x+z)^2}{4kt}} \phi(z)dz = ??? = u(-x,t)
\end{align*}
$

I did the substitution of $z=-y$.

ODD:

$
\begin{align*}
u(x,t) &= \frac{1}{\sqrt{4\pi kt}} \int_{-\infty}^{\infty} e^{\frac{-(x-y)^2}{4kt}} \phi(y)dy \\
&= -\frac{1}{\sqrt{4\pi kt}} \int_{-\infty}^{\infty} e^{\frac{-(x-y)^2}{4kt}} \phi(-y)dy \\
&= \frac{1}{\sqrt{4\pi kt}} \int_{-\infty}^{\infty} e^{\frac{-(x+z)^2}{4kt}} \phi(z)dz =???= -u(-x,t)
\end{align*}
$


I don't know how to continue, or even worse if what I have done is right.

Best Answer

I figured it out. Here are answers if someone cares:

EVEN: $ \begin{align*} u(-x,t) &= \frac{1}{\sqrt{4\pi kt}} \int_{-\infty}^{\infty} e^{\frac{-(-x-y)^2}{4kt}} \phi(y)dy \\ &= \frac{1}{\sqrt{4\pi kt}} \int_{-\infty}^{\infty} e^{\frac{-(x+y)^2}{4kt}} \phi(-y)dy \\ &= -\frac{1}{\sqrt{4\pi kt}} \int_{\infty}^{-\infty} e^{\frac{-(x-z)^2}{4kt}} \phi(z)dz \\ &= \frac{1}{\sqrt{4\pi kt}} \int_{-\infty}^{\infty} e^{\frac{-(x-z)^2}{4kt}} \phi(z)dz = u(x,t) \end{align*} $ substitution $z=-y$.

ODD:

$ \begin{align*} u(-x,t) &= \frac{1}{\sqrt{4\pi kt}} \int_{-\infty}^{\infty} e^{\frac{-(-x-y)^2}{4kt}} \phi(y)dy \\ &= \frac{1}{\sqrt{4\pi kt}} \int_{-\infty}^{\infty} e^{\frac{-(x+y)^2}{4kt}} (-\phi(-y))dy \\ &= \frac{1}{\sqrt{4\pi kt}} \int_{\infty}^{-\infty} e^{\frac{-(x-z)^2}{4kt}} \phi(z)dz \\ &= -\frac{1}{\sqrt{4\pi kt}} \int_{-\infty}^{\infty} e^{\frac{-(x-z)^2}{4kt}} \phi(z)dz = -u(x,t) \end{align*} $

Related Question