Prove that $P_nTP_nh \longrightarrow Th$ as $n \to \infty.$

functional-analysishilbert-spacesnormed-spacesprojection

Let $\{e_n \}_{n \in \Bbb N}$ be an orthonormal basis of a Hilbert space $\mathcal H$ and $P_n$ be the orthogonal projection onto $\text {span}\ \{e_1,e_2, \cdots , e_n \},\ n \geq 1.$ Prove that for all bounded linear operator $T : \mathcal H \longrightarrow \mathcal H$ and $h \in H,$ $P_nTP_nh \longrightarrow Th$ as $n \to \infty.$

We can write $h = \displaystyle\sum\limits_{n=1}^{\infty} \left \langle h, e_n \right \rangle e_n.$ Then $P_nTP_n h = \displaystyle\sum\limits_{k=1}^{n} \left \langle h, e_k \right \rangle P_n T e_k.$ Since $M = \text {span} \{e_1,e_2, \cdots , e_n \}$ is a finite dimensional subspace of $\mathcal H$ of dimension $\geq 1$ it follows that $M$ is a non-zero closed subspace of the Hilbert space $\mathcal H$ and hence $\|P_n\|_{\text {op}} = 1$ (because $P_n$ is a projection onto $M$). Now my idea is to to show $\|P_nTP_nh – Th\| \longrightarrow 0$ as $n \to \infty.$

But how do I do that? Any help in this regard will be highly appreciated.

Thanks in advance.

Best Answer

$\newcommand{nrm}[1]{\left\lVert{#1}\right\rVert}$\begin{align}\nrm{P_nTP_nh-Th}&=\nrm{P_nTP_nh-P_nTh+P_nTh-Th}\le\\&\le \nrm{P_nT(P_nh-h)}+\nrm{P_nTh-Th}\le\\&\le \nrm{P_n}\nrm T\nrm{P_nh-h}+\nrm{P_nTh-Th}\le\\&\le \nrm T\nrm{P_nh-h}+\nrm{P_nTh-Th}\to0\end{align}