Prove that $\mu^*(A) + \mu^*(A^c)=1$ if and only if for every $\epsilon>0$, there exists $E\in \mathcal A$ such that $\mu^*(A\Delta E) < \epsilon$

measure-theoryreal-analysis

I am trying to do the following problem but I have hit a few snags and was hoping to get some help.

5) Let $X=(0,1]$. Let $\mathcal A$ be the algebra consisting of disjoint unions of intervals $(a,b]$, with the usual pre-measure defined by $\mu_0((a,b])=b-a$. Let $\mu^*$ be the corresponding outer measure. Let $A\subset X$.
Prove that $\mu^*(A) + \mu^*(A^c)=1$ if and only if for every $\epsilon>0$, there exists $E\in \mathcal A$ such that $\mu^*(A\Delta E) < \epsilon$.

$(\Leftarrow)$ (For this direction, I was trying to follow some notes that I had, but I can't seem to understand the last step.)

We first have that $$A \Delta E=(A \backslash E) \cup (E \backslash A) = (A \cap E^c) \cup (E \cap A^c)$$ and also
$$A^c \Delta E^c=(A^c \backslash E^c)\cup (E^c\backslash A^c)=(A^c \cap E) \cup (E^c \cap A) $$ so we have that
$$A \Delta E = A^c \Delta E^c$$

Since $A \subset X$, we have that $A \subset E \cup (A \Delta E)$. Also, $A^c \subset E^c \cup (A^c \Delta E^c)$. Now we have,

$$\mu^*(A)+\mu^*(A^c) \leq \mu^*(E)+\mu^*(A \Delta E)+\mu^*(E^c)+\mu^*(A^c \Delta E^c)<1+2 \epsilon$$ for all epsilon.

I don't know how I can then say that we have that $\mu^*(A)+\mu^*(A^c) = 1$.

$(\Rightarrow)$ I think I can just reverse the direction of the argument if I can undersand the above but I could be wrong…

Best Answer

Assume that $\mu^*(A)+\mu^*(A^c)\le 1$, let $\varepsilon > 0$ and set $\delta := \tfrac\varepsilon 6$. Then we find $E_i,F_j\in\mathcal A$ such that $A\subset\bigcup_i E_i$, $A^c\subset\bigcup_j F_j$, and $\mu^*(A)>\sum_i|E_i|-\delta$ as well as $\mu^*(A^c)>\sum_j|F_j|-\delta$. Hence, $$ 1\,\ge\,\mu^*(A)+\mu^*(A^c)\,>\,\sum_i|E_i| + \sum_j|F_j| - 2\delta. $$ Let $n\in\Bbb N$ be so large such that $\sum_{i=n}^\infty|E_i| < \delta$ and $\sum_{j=n}^\infty|F_j| < \delta$. Now, put $E:=\bigcup_{i<n}E_i$ and $F:=\bigcup_{j<n}F_j$. Then, since $A\backslash E\subset\bigcup_{i=n}^\infty E_i$, we have $\mu^*(A\backslash E)\le\sum_{i=n}^\infty|E_i| < \delta$. Similarly, $\mu^*(A^c\backslash F) < \delta$. Now, $$ E\cup F = (E\backslash F)\cup (F\backslash E)\cup(E\cap F). $$ Since $E,F\in\mathcal A$, we also have $E\backslash F,F\backslash E,E\cap F\in\mathcal A$, and so \begin{align*} \mu^*(E\cup F) &= \mu^*(E\backslash F) + \mu^*(F\backslash E) + \mu^*(E\cap F)\\ &= \mu^*(E)-\mu^*(E\cap F) + \mu^*(F)-\mu^*(E\cap F) + \mu^*(E\cap F)\\ &= \mu^*(E)+\mu^*(F)-\mu^*(E\cap F). \end{align*} Also, $X\backslash(E\cup F)\subset(A\backslash E)\cup (A^c\backslash F)$, which implies $$ \mu^*(X\backslash(E\cup F))\le\mu^*(A\backslash E)+\mu^*(A^c\backslash F) < 2\delta. $$ Thus, we obtain $$ 1 = \mu^*(E\cup F) + \mu^*(X\backslash(E\cup F)) < \mu^*(E)+\mu^*(F) - \mu^*(E\cap F) + 2\delta. $$ Finally, this and $A\triangle E = (A\backslash E)\cup(E\cap A^c)\subset (A\backslash E)\cup(A^c\backslash F)\cup(E\cap F)$ yield $$ \mu^*(A\triangle E)\le 2\delta+\mu^*(E\cap F) < 4\delta + \mu^*(E)+\mu^*(F) - 1\,\le\,4\delta + \sum_i|E_i| + \sum_j|F_j| - 1 < \varepsilon. $$