Prove that $\mathcal{A}$ is dense in $C(X\times Y)$

real-analysis

Suppose that $X, Y$ are compact Hausdorff spaces. Let $\mathcal{A}$ be the collection of real-valued functions in $C(X\times Y)$ of the form:
$$\sum_{i=1}^n a_i g_i(x)h_i(y)$$
where $n\geq 1$, each $a\in \mathbb{R}$, $g_i\in C(X)$, and for each $h_i\in C(Y)$. Prove that $\mathcal{A}$ is dense in $C(X\times Y)$.

I try to apply the Stone-Weierstrass theorem: Check

(1) $\mathcal{A}$ is an algebra

Clearly, for each $f, g\in \mathcal{A}$,
$$\left(\sum_{i=1}^n a_i g_i(x)h_i(y)\right) \left( \sum_{i=1}^m b_i f_i(x)k_i(y)\right)\in \mathcal{A}.$$

(2) separate points

For $(x_1, y_1)\neq (x_2, y_2)$, we have $g_i(x_1)h_i(y_1)\neq g_i(x_2)h_i(y_2)$? Why can this hold?

(3) contains constant function

Clearly, $1\in \mathcal{A}$.

Is my proof right?

Best Answer

If $(x_1,y_1) \neq (x_2,y_2)$ the either $x_1 \neq x_2$ or $y_1 \neq y_2$. In the first case there exists $f \in C(X)$ such that $f(x_1)\neq f(x_2)$. The function $h(x,y)=f(x)$ is in $\mathcal A$ and $h(x_1,y_1) \neq h(x_2,y_2)$. The second case is similar, so $\mathcal A$ separates points. Rest of the argument you have given is fine.

Related Question