Prove that $\mathbb R_N [X]$ with $\langle \cdot, \cdot \rangle$ is a Hilbert space

functional-analysishilbert-spacespolynomials

Good night, I'm trying to solve this problem about Hilbert space.

Let $\mathbb R_N [X]$ be the vector space of polynomials whose their degrees are less than or equal to $N$. On $\mathbb R_N [X]$, we define the inner product $\langle \cdot, \cdot \rangle$ by $$\langle p,q \rangle = \int_0^1 p(x)q(x) \, \mathrm{d}x, \quad p,q \in \mathbb R_N [X]$$ Prove that $\mathbb R_N [X]$ with $\langle \cdot, \cdot \rangle$ is a Hilbert space.

My attempt:

For $p \in \mathbb R_N [X]$, the induced norm is $\| \cdot \|$ such that $$\| p \| = \sqrt {\int_0^1 p^2(x) \, \mathrm{d}x }$$

Let $(p_n)_{n \in \mathbb N}$ is a Cauchy sequence in $\mathbb R_N [X]$ where $p_n = \sum_{k=0}^N p^{n}_k X^k$ for all $n \in \mathbb N$. It follows that $$\forall \epsilon >0, \exists M \in \mathbb N,\forall n,m> M:\| p_n – p_m \| = \sqrt {\int_0^1 \left (\sum_{k=0}^N (p^{n}_k – p^{m}_k) X^k \right)^2 \, \mathrm{d}x} < \epsilon$$


I guess that $(p_k^n)_{n \in \mathbb N}$ is Cauchy sequence in $\mathbb R$ for all $i = \overline{0,N}$, but I fail to get the desired result.

Could you please shed me some light? Thank you so much!

Best Answer

Let $\|P\|_{\infty}=\underset{x\in[0,N]}{\sup}{|P(x)|}$. First notice that if $P\in\mathbb{R}_N[X]$, then $$ P=\sum_{k=0}^N{P(k)L_k} $$ where $L_i(j)=\delta_{i,j}$ for all $0\leqslant i,j\leqslant N$. Thus if $\|P_n-P_m\|_{\infty}<\varepsilon$, in particular $|P_n(i)-P_m(i)|\leqslant \|P_n-P_m\|_{\infty}<\varepsilon$ and $(P_n(i))_{n\in\mathbb{N}}$ is a Cauchy sequence and thus converges toward $\ell_i$. Finally $$ \forall n\in\mathbb{N},\,\left\|P_n-\sum_{k=0}^N{\ell_k L_k}\right\|_{\infty}\leqslant \sum_{k=0}^N{|P_n(k)-\ell_k|\|L_k\|_{\infty}}\underset{n\rightarrow +\infty}{\longrightarrow}0 $$ and $$ \lim\limits_{n\rightarrow +\infty}P_n=\sum_{k=0}^N{\ell_k L_k}\in\mathbb{R}_N[X] $$ Since $\dim\mathbb{R}_N[X]<+\infty$, this works with $\|\cdot\|$ instead of $\|\cdot\|_{\infty}$ as well.