Prove that $\left(1-\frac{1}{n+1}\right)\left(1-\frac{1}{n+2}\right)\cdot\ldots\cdot\left(1-\frac{1}{2n}\right)=\frac{1}{2}$

inductionsolution-verification

Prove the following equality:$$\left(1-\frac{1}{n+1}\right)\left(1-\frac{1}{n+2}\right)\cdot\ldots\cdot\left(1-\frac{1}{2n}\right)=\frac{1}{2}$$
$$\text{for all }\;n\in\mathbb{N}\;.$$


Could you tell me if my proof is correct?

Is there another way to prove it?

Does it exist a simpler proof?


We are going to prove by induction the following equality:

$\left(1-\dfrac{1}{n+1}\right)\left(1-\dfrac{1}{n+2} \right)\cdot\ldots\cdot\left(1-\dfrac{1}{2n}\right)=\dfrac12\;.\quad\color{blue}{(*)}$

For $\;n=1\;$ we get that

$\left(1-\dfrac{1}{n+1}\right)\left(1-\dfrac{1}{n+2} \right)\cdot\ldots\cdot\left(1-\dfrac{1}{2n}\right)=$

$=\left(1-\dfrac12\right)=\dfrac12$.

Now we suppose that $(*)$ is true and prove that

$\left(1-\dfrac{1}{n+2}\right)\left(1-\dfrac{1}{n+3} \right)\cdot\ldots\cdot\left(1-\dfrac{1}{2n+2}\right)=\dfrac12\;.$

It results that

$\left(1-\dfrac{1}{n+2}\right)\left(1-\dfrac{1}{n+3} \right)\cdot\ldots\cdot\left(1-\dfrac{1}{2n+2}\right)=$

$=\dfrac{\left(1-\dfrac{1}{n+1}\right)\left(1-\dfrac{1}{n+2} \right)\cdot\ldots\cdot\left(1-\dfrac{1}{2n+2}\right)}{\left(1-\dfrac{1}{n+1}\right)}=$

$=\dfrac{\dfrac12\left(1-\dfrac{1}{2n+1}\right)\left(1-\dfrac{1}{2n+2}\right)}{1-\dfrac{1}{n+1}}=$

$=\dfrac{\dfrac12\left(\dfrac{2n}{2n+1}\right)\left(\dfrac{2n+1}{2n+2}\right)}{\dfrac{n}{n+1}}=$

$=\dfrac12\cdot\dfrac{\color{red}{2}\color{blue}{n}}{\color{green}{2n+1}}\cdot\dfrac{\color{green}{2n+1}}{\color{red}{2}(\color{brown}{n+1})}\cdot\dfrac{\color{brown}{n+1}}{\color{blue}{n}}=$

$=\dfrac12\;.$

Hence, by induction, the equality $(*)$ is true for all $n\in\mathbb{N}\;.$

Best Answer

HINT

Notice that each denominator cancels the next numerator, whence we get

$\begin{align} &\left(1 - \frac{1}{n+1}\right)\left(1 - \frac{1}{n+2}\right)\cdot\ldots\cdot\left(1 - \frac{1}{2n}\right) =\\ &=\left(\frac{n}{n+1}\right)\left(\frac{n+1}{n+2}\right)\cdot\ldots\cdot\left(\frac{2n-1}{2n}\right) = \frac{n}{2n}=\frac{1}{2}\;. \end{align}$