Prove that $ \langle x^2+y^2+z^2 \rangle $ is a prime ideal of $ \mathbb{R}[x, y, z]$

abstract-algebramaximal-and-prime-idealsring-theory

Prove that $ \langle x^2+y^2+z^2 \rangle $ is prime ideal of $ \mathbb{R}[x, y, z]$

I try to find an integral domain such that quotient ring is isomorphic to integral domain but I can't.

Actually I am beginner to learn ring of polynomial with more than one variable.

Thanks in advance

Best Answer

If $\left<x^2+y^2+z^2\right>$ is not a prime ideal, there should exist $g,h\in \mathbb{R}[x,y,z]$ s.t. $x^2+y^2+z^2\mid gh$, $x^2+y^2+z^2\nmid g,h$.

Since $\mathbb{R}[x,y,z]$ is a UFD, this implies there exist nonunit $\alpha,\beta\in\mathbb{R}[x,y,z]$ s.t. $\alpha\beta=x^2+y^2+z^2$.

$\alpha,\beta\neq 0$, so $\alpha,\beta$ not being unit implies $\deg(\alpha),\deg(\beta)>0$. Since $\deg(\alpha\beta)=2$ and $\mathbb{R}$ is integral, $\deg(\alpha)+\deg(\beta)=2\Rightarrow \deg(\alpha)=\deg(\beta)=1$.

We can write $\alpha=ax+by+cz$.

Now, observe that for every $(x,y,z)\neq(0,0,0)$, $x^2+y^2+z^2\neq 0$. Since we can find nontrivial $(x,y,z)$ s.t. $ax+by+cz=0$, this is a contradiction.