Prove that : $ \int_{0}^{2\ln{\varphi}}{\theta\ln{\left(2\sinh{\frac{\theta}{2}}\right)}\,\mathrm{d}\theta}=-\frac{1}{5}\zeta\left(3\right) $

golden ratiointegrationriemann-zeta

Denoting $ \varphi=\frac{1+\sqrt{5}}{2}=\mathrm{Golden\ Ratio} $. How would you prove that : $$ \int_{0}^{2\ln{\varphi}}{\theta\ln{\left(2\sinh{\frac{\theta}{2}}\right)}\,\mathrm{d}\theta}=-\frac{1}{5}\zeta\left(3\right) $$

I came accross this strange identity while reading the following article : VALUES OF THE RIEMANN ZETA FUNCTION AND
INTEGRALS INVOLVING $\log{\left(2\sinh{\frac{\theta}{2}}\right)}$ AND $\log{\left(2\sin{\frac{\theta}{2}}\right)}$
. (No complete proof was given in the article). I'm still trying to prove it. For now I did try to set $ x=2\ln{\left(\sinh{\frac{\theta}{2}}\right)} $ to get rid of the golden ratio, but it doesn't seem to get any better. I know I'll have to expand the integrand to get to $ \zeta $ using, for example, the fact that : $ \ln{\left(\sinh{x}\right)}=x-\ln{2}-\sum\limits_{n=1}^{+\infty}{\frac{\mathrm{e}^{-2nx}}{n}} $, but I'm sure I cannot do it now, because of that golden ratio in the upper bound. Any ideas, hints will be appreciated.

Best Answer

First, we need a preliminary result:

First preliminary result :

$$\ln\left(2 \sinh\left(\frac{x}{2}\right)\right)=\frac{x}{2}-\sum_{k=1}^{\infty}\frac{e^{-kx}}{k} \tag{1}$$

Proof:

$$ \begin{aligned} \ln\left( \sinh(x)\right)&=\ln\left( \frac{1}{2} \left( e^{x}-e^{-x} \right)\right)\\ &=-\ln 2+\ln\left( e^{x}-e^{-x} \right)\\ &=-\ln 2+\ln\left( \frac{e^{-x}}{e^{-x}} \left( e^{x}-e^{-x} \right)\right)\\ &=-\ln 2+x+\ln\left( 1-e^{-2x} \right)\\ &=-\ln 2+x-\sum_{n=1}^{\infty}\frac{e^{-2nx}}{n} \qquad \blacksquare \end{aligned} $$

Letting $x \to \frac{x}{2}$ completes the proof


Than:

$$ \begin{aligned} \sum_{n=1}^\infty\frac{ (-1)^{n-1}}{\binom{2n}{n}n^3}&=-2\int_0^{2\ln(\phi)}x\ln\left(2 \sinh\left( \frac{x}{2}\right) \right)\,dx \\ &=-2\int_0^{2\ln(\phi)}x\left(\frac{x}{2}-\sum_{k=1}^{\infty}\frac{e^{-kx}}{k} \right)\,dx & \left( \text{by eq. (1)}\right)\\ &=-\int_0^{2\ln(\phi)}x^2\,dx+2\sum_{k=1}^{\infty}\frac{1}{k}\int_0^{2\ln(\phi)} xe^{-kx}\,dx\\ &=-\frac{8}{3}\ln^3(\phi)+2\sum_{k=1}^{\infty}\frac{1}{k}\left(-\frac{2\ln(\phi)\phi^{-2k}}{k}+\frac{1}{k}\int_0^{2\ln(\phi)} e^{-kx}\,dx \right)\\ &=-\frac{8}{3}\ln^3(\phi)-4\ln(\phi)\sum_{k=1}^{\infty}\frac{(\phi^{-2})^k}{k^2}+2\sum_{k=1}^{\infty}\frac{1}{k}\left(\frac{1}{k^2}-\frac{(\phi^{-2})^k}{k^2}\right)\\ &=-\frac{8}{3}\ln^3(\phi)-4\ln(\phi)\operatorname{Li}_2(\phi^{-2})+2\zeta(3)-2\sum_{k=1}^{\infty}\frac{(\phi^{-2})^k}{k^3}\\ &=-\frac{8}{3}\ln^3(\phi)-4\ln(\phi)\operatorname{Li}_2(\phi^{-2})-2\operatorname{Li}_3(\phi^{-2})+2\zeta(3)\\ &=-\frac{8}{3}\ln^3(\phi)-4\ln(\phi)\left( \frac{\pi^{2}}{15}-\ln ^{2} \phi\right)-2\left(\frac45\zeta(3)+\frac{2\ln ^{3}(\phi)}{3}-\frac{2\pi^{2} \ln (\phi)}{15} \right)+2\zeta(3)\\ &=-\frac{8}{3}\ln^3(\phi)+4\ln^3(\phi)-\frac{4}{3}\ln^3(\phi)-\frac85\zeta(3)+2\zeta(3)\\ &=\frac25\zeta(3) \qquad \blacksquare \end{aligned} $$

Which is the representation of $\zeta(3)$ that Apery used to prove the irrationality of $\zeta(3)$.

Note that we used

$\mathrm{Li}_{2}\left(\frac{1}{\phi^{2}}\right) =\frac{\pi^{2}}{15}-\ln ^{2} \phi$

A proof can be found here in my blog

And:

$\operatorname{Li}_{3}\left(\frac{1}{\phi^{2}}\right)=\frac45\zeta(3)+\frac{2\ln ^{3}(\phi)}{3}-\frac{2\pi^{2} \ln (\phi)}{15}$

Proof of the second relation: Recall the Trilogarithm identity proved here

$ \operatorname{Li}_{3}(x)+\operatorname{Li}_{3}(1-x)+\operatorname{Li}_{3}\left(1-\frac{1}{x}\right)=\zeta(3)+\frac{\ln ^{3}(x)}{6}+\frac{\pi^{2} \ln (x)}{6}-\frac{\ln ^{2}(x) \ln (1-x)}{2}$

And the polylogarithm relation:

$\operatorname{Li}_{n}(x)+\operatorname{Li}_{n}(-x)=2^{1-n}\operatorname{Li}_{n}(x^2)$

Example, letting $x=\phi^{-1}$ in the last relation we obtain

$$\operatorname{Li}_{n}(\phi^{-1})+\operatorname{Li}_{n}(-\phi^{-1})=\frac14\operatorname{Li}_{n}(\phi^{-2})$$

Claim:

$$\operatorname{Li}_{3}\left(\frac{1}{\phi^{2}}\right)=\frac45\zeta(3)+\frac{2\ln ^{3}(\phi)}{3}-\frac{2\pi^{2} \ln (\phi)}{15}$$

Proof:

If we let $x=\phi^{-1}$ in $(2)$ we obtain

$$ \begin{aligned} &\operatorname{Li}_{3}\left(\phi^{-1}\right)+\operatorname{Li}_{3}(1-\phi^{-1})+\operatorname{Li}_{3}\left(1-\frac{1}{\phi^{-1}}\right)=\zeta(3)-\frac{\ln ^{3}(\phi)}{6}-\frac{\pi^{2} \ln (\phi)}{6}-\frac{\ln ^{2}(\phi) \ln (1-\phi^{-1})}{2}\\ &\operatorname{Li}_3\left(\phi^{-1} \right)+\operatorname{Li}_3\left(\phi^{-2} \right)+\operatorname{Li}_3\left(-\phi^{-1} \right)=\zeta(3)-\frac{\ln^3(\phi)}{6}-\frac{\pi^2\ln(\phi)}{6}-\frac{\ln^2(\phi)\ln(\phi^{-2})}{2}\\ &\frac14\operatorname{Li}_{3}\left(\phi^{-2}\right)+\operatorname{Li}_{3}(\phi^{-2})=\zeta(3)-\frac{\ln ^{3}(\phi)}{6}-\frac{\pi^{2} \ln (\phi)}{6}+\ln ^{3}(\phi) \\ &\frac54\operatorname{Li}_{3}\left(\phi^{-2}\right)=\zeta(3)+\frac{5\ln ^{3}(\phi)}{6}-\frac{\pi^{2} \ln (\phi)}{6} \\ &\operatorname{Li}_{3}\left(\phi^{-2}\right)=\frac45\zeta(3)+\frac{2\ln ^{3}(\phi)}{3}-\frac{2\pi^{2}\ln (\phi)}{15} \qquad \blacksquare \\ \end{aligned} $$