Prove that if (a,b) are positive integers with gcd(a,bc) = gcd(a,b)gcd(a,c) , then gcd(a,b)=1

divisibilityelementary-number-theorygcd-and-lcm

Let a and b be positive integers with $gcd(a,bc)$ = $gcd(a,b)gcd(a,c) $ ∀ positive integer c $=>$ $gcd(a,b)=1$

Let $gcd(a,bc)=d$ , $gcd(a,b)=d_{1}$ , $gcd(a,c)=d_{2}$

I try to prove $d_{2}$|$d$ and $d$|$d_{2}$

It is easy to show $d_{2}$|$d$
,but I don't know how to show $d$|$d_{2}$,
or show
$d$ is common divisor of (a,c)

Since if $d$ is a common divisor of (a,c), I can know $d$$d_{2}$

and $d_{2}$|$d$ => $d_{2}$$d$,
then I have $d_{2}$ = $d$

Hence, I can conclude $d_{1}$ = 1

Best Answer

$$1)\text{ }\text{ }\text{ }\text{ }\text{gcd}(a,b) = \text{gcd}(a,b).$$ $$2)\text{ }\text{ }\forall n \in \mathbb{N} \text{ }\text{ }\text{ }\text{gcd}(a,b^n) = \text{gcd}(a,b)\text{gcd}(a,b^{n-1}).$$ $$3) \text{ }\text{gcd}(a,b^n) = \text{gcd}(a,b)^n.$$

$$4)\text{ } \text{gcd}(a,b^n) \leq a.$$

$$5) \text{ }\text{gcd}(a,b)\geq 2 \Rightarrow \text{gcd}(a,b^n) = \text{gcd}(a,b)^n \geq 2^n.$$

$$6)\text{ }\text{ }\text{ }\text{ } 4), 5) \Rightarrow \text{gcd}(a,b) \leq 1. $$

$$7)\text{ }\text{ }a,b \geq 1 \Rightarrow \text{gcd}(a,b) = 1.$$